Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-04T03:44:38.777Z Has data issue: false hasContentIssue false

Ray-tracing in the electron-cyclotron frequency region

Published online by Cambridge University Press:  13 March 2009

F. de Luca
Affiliation:
Laboratorio di Fisica del Plasma, C.N.R./Euratom Association, and Istituto di Fisica dell'Università di Milano, Milano, Italy
C. Maroli
Affiliation:
Laboratorio di Fisica del Plasma, C.N.R./Euratom Association, and Istituto di Fisica dell'Università di Milano, Milano, Italy

Abstract

The tracing of the geometrical optics rays in toroidal geometry and in the electron-cyclotron frequency range has been done numerically. The results presented are relevant to the extraordinary-mode propagation and conversion at the upper-hybrid resonance layer. High-density regime refraction effects, together with strong bending of the warm Bernstein rays along the toroidal direction and resonance-cone structure generation, are the main features of the numerical output.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alikaev, V. V., Borrovskii, G. A.Poznyak, V. I., Razumova, K. A., Sannikov, V. V., Sokolov, Y. A. & Shmarin, A. A. 1976 Soviet J. Plasma Phys. 2, 212.Google Scholar
Alikaev, V. V., Dnestrovskii, Y. N., Parail, V. V. & Pereverzev, G. V. 1977 Soviet J. Plasma Phys. 3, 127.Google Scholar
BEkefi, G. 1966 Radiation Processes in Plasmas. Wiley.Google Scholar
Bernstein, I. B. 1975 Phys Fluids, 18, 320.CrossRefGoogle Scholar
Bers, A. 1976 Third Symposium on Plasma Heating in Toroidal Devices, Varenna, Italy.Google Scholar
Bornatici, M. & Maroli, C. 1977 Proceedings of Course and Workshop on Theory of Mag. netically Confined Plasmas, Varenna. Euratom.Google Scholar
Fidone, I., Granata, G., Meyer, R. L. & Ramponi, G.. 1977 Report EUR-CEA FC-912.Google Scholar
Golent, V. E., Larionov, M. M., Levin, L. S.Pakhomov, L. P., Podushnikova, K. A., Rozhdestvensky, V. V. & Serebreny, G. A. 1973 Third International Symposium on Totoidal Plasma Confinements, Garching, E5.Google Scholar
Golant, V. E. & Piliya, A. D. 1972 Soviet Phys. Uspekhi, 14, 413.CrossRefGoogle Scholar
Granatstein, V. L., Sprangle, P., Herndon, M., Parker, R. K. & Schlesinger, S. P. 1975 Appl. Phys. 46 3800.CrossRefGoogle Scholar
Hirschfield, J. L. & Granatstein, V. L. 1977 IEEE Transact. MTT, 25, 522.CrossRefGoogle Scholar
Kochetkov, V. M. 1976 Soviet J. Plasma Phys. 3, 280.Google Scholar
Litvak, A. G., Permitin, G. V., Suvorov, E. V. & Frajman, A. A. 1977 Nucl. Fusion, 17, 659.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, McGraw-Hill.Google Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Weinberg, S. 1962 Phys. Rev. 126, 1899.CrossRefGoogle Scholar
Zaytsev, N. I., Pankratova, T. B., Petelin, M. I. & Flyagin, V. A. 1974 Radio Engineering and electronic Phys. 19, 103.Google Scholar