Published online by Cambridge University Press: 13 March 2009
The influence of resistivity and Hall current on the Rayleigh-Taylor problem involving two superposed fluids of finite density in the presence of gravitational and magnetic fields normal to the fluid interface is examined. Unlike the related problem in which the magnetic field is parallel to the interface, it appears that the dispersion relation does not exhibit singular behaviour in the zero resistivity limit. The ‘potentially stable’ situation is considered throughout. The results are compared with earlier ideal and resistive theories, and an apparent anomaly regarding the existence of normal modes in such systems is resolved.