Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T13:49:31.589Z Has data issue: false hasContentIssue false

Rankine–Hugoniot relations for shocks with demagnetized ions

Published online by Cambridge University Press:  01 April 2008

M. GEDALIN
Affiliation:
Department of Physics, Ben-Gurion University, Beer-Sheva, Israel ([email protected])
M. BALIKHIN
Affiliation:
ACSE, University of Sheffield, Sheffield, UK

Abstract

The width of a quasi-perpendicular collisionless shock front is smaller than the convective ion gyroradius so that ions become demagnetized in the ramp. An approach is proposed for derivation of approximate expressions for the magnetic compression ratio and cross-shock potential from the analysis of the ion motion across the ramp and pressure balance condition, without making assumptions about the ion equation of state. The cross-shock potential and magnetic compression ratio are found as functions of the Mach number for low-Mach-number perpendicular shocks.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balikhin, M., Gedalin, M. and Petrukovich, A. 1993 New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 12591262.CrossRefGoogle ScholarPubMed
Balikhin, M., Krasnosselskikh, V. and Gedalin, M. 1995 The scales in quasiperpendicular shocks. Adv. Space Res. 15, 247260.CrossRefGoogle Scholar
Forslund, D. W. and Freidberg, J. P. 1971 Theory of laminar collisionless shocks. Phys. Rev. Lett. 27, 11891192.CrossRefGoogle Scholar
Forslund, D. W. and Shonk, C. R. 1970 Formation and structure of electrostatic collisionless shocks. Phys. Rev. Lett. 25, 16991702.CrossRefGoogle Scholar
Gedalin, M. 1996 Ion reflection at the shock front revisited. J. Geophys. Res. 101, 48714878.CrossRefGoogle Scholar
Gedalin, M. 1997 Ion heating in oblique low-Mach number shocks. Geophys. Res. Lett. 24, 25112514.CrossRefGoogle Scholar
Goodrich, C. C. and Scudder, J. D. 1984 The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves. J. Geophys. Res. 89, 66546662.CrossRefGoogle Scholar
Leroy, M. M. 1983 Structure of perpendicular shocks in collisionless plasma. Phys. Fluids 26, 27422753.CrossRefGoogle Scholar
Mellott, M. M. and Livesey, W. A. 1987 Shock overshoots revisited. J. Geophys. Res. 92, 1366113665.CrossRefGoogle Scholar
Moiseev, S. S. and Sagdeev, R. Z. 1963 Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy C 5, 4347.CrossRefGoogle Scholar
Newbury, J. A., Russell, C. T. and Gedalin, M. 1998 The ramp widths of high-Mach-number, quasi-perpendicular collisionless shocks. J. Geophys. Res. 103, 2958129594.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23.Google Scholar
Schamel, H. 1972 Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905924.CrossRefGoogle Scholar
Schwartz, S. J. 1987 Comment on “the resolved layer of a collisionless, high β, supercritical, quasi-perpendicular shock wave, 2, dissipative fluid electrodynamics” by J. D. Scudder, A. Mangeney, C. Lacombe, C. C. Harvey, and T. L. Aggson. J. Geophys. Res. 92, 61686168.CrossRefGoogle Scholar
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T. and Russell, C. T. 1983 Evolution of ion distributions across the nearly perpendicular bow shock: specularly and non-specularly reflected-gyrating ions. J. Geophys. Res. A 88, 61216136.CrossRefGoogle Scholar
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986 The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I—Rankine–Hugoniot geometry, currents, and stationarity. J. Geophys. Res. 91, 1101911052.CrossRefGoogle Scholar
Tidman, D. A. and Krall, N. A. 1971 Shock Waves in Collisionless Plasmas (New York: Wiley-Interscience).Google Scholar