Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T01:49:32.581Z Has data issue: false hasContentIssue false

A quasi-static equilibrium model of the rotamak

Published online by Cambridge University Press:  13 March 2009

W. K. Bertram
Affiliation:
Australian Nuclear Science and Technology Organisation, Lucas Heights Research Laboratories, Private Mail Bag 1, Menai, NSW 2234, Australia

Abstract

An equilibrium model for a spherical field reversed configuration in the presence of a transverse rotating magnetic field is presented. It is shown that this quasi-static equilibrium is an exact solution of the time-dependent ideal magneto-hydrodynamic equations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. V. & Barnes, D. C. 1981 J. Comp. Phys. 42, 288.CrossRefGoogle Scholar
Brotherton-Ratcliffe, D. & Storer, R. G. 1988 Plasma Phys. Contr. Fusion, 30, 967.CrossRefGoogle Scholar
Hewett, D. W. & Spencer, R. L. 1983 Phys. Fluids, 26, 1299.CrossRefGoogle Scholar
Hugrass, W. N. 1982 J. Plasma Phys. 28, 369.CrossRefGoogle Scholar
Hugrass, W. N., Jones, I. R., McKenna, K. F., Phillips, M. G. R., Storer, R. G. & Tuczek, H. 1980 Phys. Rev. Lett. 44, 1676.CrossRefGoogle Scholar
Jones, I. R. 1984 Proceedings of International Conference on Plasma Physics, Lausanne, Switzerland (ed. M. Q. Tran & R. J. Verbeek), vol. 1, p. 473.Google Scholar
Jones, I. R. & Hugrass, W. N. 1981 J. Plasma Phys. 26, 441.CrossRefGoogle Scholar
Schwartzmeier, J. L., Barnes, D. C., Hewett, D. W., Seyler, C. E., Shestakov, A. I. & Spencer, R. L. 1983 Phys. Fluids, 26, 1295.CrossRefGoogle Scholar
Soloviev, L. S. 1976 Rev. Plasma Phys. 5, 239.Google Scholar
Storer, R. G. 1982 Plasma Phys. 24, 543.CrossRefGoogle Scholar