Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T01:45:12.612Z Has data issue: false hasContentIssue false

Quasilinear gyrokinetic theory: a derivation of QuaLiKiz

Published online by Cambridge University Press:  05 August 2021

C.D. Stephens*
Affiliation:
University of California, Los Angeles, 475 Portola Plaza, Los Angles, CA90095, USA Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748Garching, Germany
X. Garbet
Affiliation:
CEA, IRFM, F-13108Saint Paul-lez-Durance, France
J. Citrin
Affiliation:
DIFFER–Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612AJ Eindhoven, The Netherlands
C. Bourdelle
Affiliation:
CEA, IRFM, F-13108Saint Paul-lez-Durance, France
K.L. van de Plassche
Affiliation:
DIFFER–Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612AJ Eindhoven, The Netherlands
F. Jenko
Affiliation:
Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748Garching, Germany
*
Email address for correspondence: [email protected]

Abstract

In order to predict and analyse turbulent transport in tokamaks, it is important to model transport that arises from microinstabilities. For this task, quasilinear codes have been developed that seek to calculate particle, angular momentum and heat fluxes, both quickly and accurately. In this tutorial, we present a derivation of one such code known as QuaLiKiz, a quasilinear gyrokinetic transport code. The goal of this derivation is to provide a self-contained and complete description of the underlying physics and mathematics of QuaLiKiz from first principles. This work serves both as a comprehensive overview of QuaLiKiz specifically as well as an illustration for deriving quasilinear models in general.

Type
Tutorial
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, J., Parra, F.I., Barnes, M., Dorland, W., Hammett, G.W., Rodrigues, P. & Loureiro, N.F. 2014 Intrinsic momentum transport in up–down asymmetric tokamaks. Plasma Phys. Control. Fusion 56 (9), 095014.CrossRefGoogle Scholar
Baumgaertel, J.A., Belli, E.A., Dorland, W., Guttenfelder, W., Hammett, G.W., Mikkelsen, D.R., Rewoldt, G., Tang, W.M. & Xanthopoulos, P. 2011 Simulating gyrokinetic microinstabilities in stellarator geometry with GS2. Phys. Plasmas 18 (12), 122301.CrossRefGoogle Scholar
Besse, N., Elskens, Y., Escande, D.F. & Bertrand, P. 2011 Validity of quasilinear theory: refutations and new numerical confirmation. Plasma Phys. Control. Fusion 53 (2), 025012.CrossRefGoogle Scholar
Biglari, H. & Chen, L. 1986 Theory of energetic trapped particle-induced resistive interchange- ballooning modes. Phys. Fluids 29 (9), 29602974.CrossRefGoogle Scholar
Bourdelle, C. 2000 Analyse de stabilité de plasmas de tokamak. PhD thesis, Université Joseph Fourier-Grenoble I, France.Google Scholar
Bourdelle, C. 2015 Turbulent transport in tokamak plasmas: briding theory and experiment. Habilitation thesis, Université de Provence.CrossRefGoogle Scholar
Bourdelle, C., Citrin, J., Baiocchi, B., Casati, A., Cottier, P., Garbet, X., Imbeaux, F. & JET Contributors 2016 Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz. Plasma Phys. Control. Fusion 58 (1), 014036.CrossRefGoogle Scholar
Bourdelle, C., Garbet, X., Hoang, G., Ongena, J. & Budny, R. 2002 Stability analysis of improved confinement discharges: internal transport barriers in tore supra and radiative improved mode in TEXTOR. Nucl. Fusion 42 (7), 892902.CrossRefGoogle Scholar
Bourdelle, C., Garbet, X., Imbeaux, F., Casati, A., Dubuit, N., Guirlet, R. & Parisot, T. 2007 A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas. Phys. Plasmas 14 (11), 112501.CrossRefGoogle Scholar
Brizard, A.J. 2011 Compact formulas for guiding-center orbits in axisymmetric tokamak geometry. Phys. Plasmas 18 (2), 022508.CrossRefGoogle Scholar
Brizard, A.J. & Hahm, T.S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.CrossRefGoogle Scholar
Candy, J. 2009 A unified method for operator evaluation in local Grad–Shafranov plasma equilibria. Plasma Phys. Control. Fusion 51 (10), 105009.CrossRefGoogle Scholar
Candy, J., Waltz, R.E. & Rosenbluth, M.N. 2004 Smoothness of turbulent transport across a minimum-q surface. Phys. Plasmas 11 (5), 18791890.CrossRefGoogle Scholar
Cary, J.R. & Brizard, A.J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.CrossRefGoogle Scholar
Casati, A., Bourdelle, C., Garbet, X., Imbeaux, F., Candy, J., Clairet, F., Dif-Pradalier, G., Falchetto, G., Gerbaud, T., Grandgirard, V., Gürcan, Ö.D., Hennequin, P., Kinsey, J., Ottaviani, M., Sabot, R., Sarazin, Y., Vermare, L. & Waltz, R. 2009 Validating a quasi-linear transport model versus nonlinear simulations. Nucl. Fusion 49 (8), 085012.CrossRefGoogle Scholar
Casson, F., et al. 2020 Predictive multi-channel flux-driven modelling to optimise ICRH tungsten control and fusion performance in JET. Nucl. Fusion 60 (6), 066029.CrossRefGoogle Scholar
Citrin, J., et al. 2017 Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model qualikiz. Plasma Phys. Control. Fusion 59 (12), 124005.CrossRefGoogle Scholar
Citrin, J., Bourdelle, C., Cottier, P., Escande, D.F., Gürcan, D., Hatch, D.R., Hogeweij, G.M.D., Jenko, F. & Pueschel, M.J. 2012 Quasilinear transport modelling at low magnetic shear. Phys. Plasmas 19 (6), 062305.CrossRefGoogle Scholar
Connor, J., Hastie, R. & Martin, T. 1983 Effect of pressure gradients on the bounce-averaged particle drifts in a tokamak. Nucl. Fusion 23 (12), 17021704.CrossRefGoogle Scholar
Connor, J.W., Hastie, R.J. & Taylor, J.B. 1979 High mode number stability of an axisymmetric toroidal plasma. Proc. R. Soc. A 365, 117.Google Scholar
Cottier, P., Bourdelle, C., Camenen, Y., Gürcan, Ö.D., Casson, F.J., Garbet, X., Hennequin, P. & Tala, T. 2014 Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach. Plasma Phys. Control. Fusion 56 (1), 015011.CrossRefGoogle Scholar
Dannert, T. & Jenko, F. 2005 Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Phys. Plasmas 12 (7), 072309.CrossRefGoogle Scholar
Davies, B. 1986 Locating the zeros of an analytic function. J. Comput. Phys. 66 (1), 3649.CrossRefGoogle Scholar
Depret, G., Garbet, X., Bertrand, P. & Ghizzo, A. 2000 Trapped-ion driven turbulence in tokamak plasmas. Plasma Phys. Control. Fusion 42 (9), 949971.CrossRefGoogle Scholar
Garbet, X. 2001 Instabilities, turbulence and transport in a magnetized plasma. Habilitation thesis, Université de Provence, Aix-Marseille I, France.Google Scholar
Garbet, X., Esteve, D., Sarazin, Y., Abiteboul, J., Bourdelle, C., Dif-Pradalier, G., Ghendrih, P., Grandgirard, V., Latu, G. & Smolyakov, A. 2013 Turbulent acceleration and heating in toroidal magnetized plasmas. Phys. Plasmas 20 (7), 072502.CrossRefGoogle Scholar
Garbet, X., Laurent, L., Mourgues, F., Roubin, J. & Samain, A. 1990 Variational calculation of electromagnetic instabilities in tokamaks. J. Comput. Phys. 87 (2), 249269.CrossRefGoogle Scholar
Genz, A. & Malik, A. 1980 Remarks on algorithm 006: an adaptive algorithm for numerical integration over an N-dimensional rectangular region. J. Comput. Appl. Math. 6 (4), 295302.CrossRefGoogle Scholar
Goldstein, H., Poole, C. & Safko, J. 2001 Classical Mechanics. Addison-Wesley.Google Scholar
Görler, T. & Jenko, F. 2008 a Scale separation between electron and ion thermal transport. Phys. Rev. Lett. 100, 185002.CrossRefGoogle ScholarPubMed
Görler, T. & Jenko, F. 2008 b Multiscale features of density and frequency spectra from nonlinear gyrokinetics. Phys. Plasmas 15 (10), 102508.CrossRefGoogle Scholar
Guasti, M. 1992 Analytic geometry of some rectilinear figures. Intl J. Math. Educ. Sci. Technol. 23, 895902.Google Scholar
Gürcan, Ö.D. 2014 Numerical computation of the modified plasma dispersion function with curvature. J. Comput. Phys. 269, 156167.CrossRefGoogle Scholar
Horton, W. 1984 Drift wave turbulence and anomalous transport. In Handbook of Plasma Physics, Basic Plasma Physics, Volume II (ed. A. A. Galeev & R. N. Sudan). Elsevier.Google Scholar
Howard, N., Holland, C., White, A., Greenwald, M. & Candy, J. 2016 Multi-scale gyrokinetic simulation of tokamak plasmas: enhanced heat loss due to cross-scale coupling of plasma turbulence. Nucl. Fusion 56 (1), 014004.CrossRefGoogle Scholar
Howes, G.G., Dorland, W., Cowley, S.C., Hammett, G.W., Quataert, E., Schekochihin, A.A. & Tatsuno, T. 2008 Kinetic simulations of magnetized turbulence in astrophysical plasmas. Phys. Rev. Lett. 100, 065004.CrossRefGoogle ScholarPubMed
Howes, G.G., TenBarge, J.M., Dorland, W., Quataert, E., Schekochihin, A.A., Numata, R. & Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107, 035004.CrossRefGoogle ScholarPubMed
Jenko, F., Dannert, T. & Angioni, C. 2005 Heat and particle transport in a tokamak: advances in nonlinear gyrokinetics. Plasma Phys. Control. Fusion 47 (12B), B195B206.CrossRefGoogle Scholar
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B.N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7 (5), 19041910.CrossRefGoogle Scholar
Jenko, F. & Kendl, A. 2002 Stellarator turbulence at electron gyroradius scales. New J. Phys. 4, 3535.CrossRefGoogle Scholar
Johnson, C. 1991 Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press.Google Scholar
Kaufman, A.N. 1972 Quasilinear diffusion of an axisymmetric toroidal plasma. Phys. Fluids 15 (6), 10631069.CrossRefGoogle Scholar
Kinsey, J.E., Staebler, G.M. & Waltz, R.E. 2008 The first transport code simulations using the trapped gyro-landau-fluid model. Phys. Plasmas 15 (5), 055908.CrossRefGoogle Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88 (2), 128140.CrossRefGoogle Scholar
Krommes, J. A. 2002 Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep. 360 (1), 1352.CrossRefGoogle Scholar
Kubo, R. 1963 Stochastic liouville equations. J. Math. Phys. 4 (2), 174183.CrossRefGoogle Scholar
Laval, G. & Pesme, D. 1983 Breakdown of quasilinear theory for incoherent 1-d langmuir waves. Phys. Fluids 26 (1), 5265.CrossRefGoogle Scholar
Linder, O. 2016 Comparison of tokamak linear microstability calculations between the gyrokinetic codes QuaLiKiz and GENE. Intership report. Eindhoven University of Technology.Google Scholar
Lin, Y., Rice, J.E., Wukitch, S.J., Greenwald, M.J., Hubbard, A.E., Ince-Cushman, A., Lin, L., Porkolab, M., Reinke, M.L. & Tsujii, N. 2008 Observation of ion-cyclotron-frequency mode-conversion flow drive in tokamak plasmas. Phys. Rev. Lett. 101, 235002.CrossRefGoogle ScholarPubMed
Maeyama, S., Idomura, Y., Watanabe, T.-H., Nakata, M., Yagi, M., Miyato, N., Ishizawa, A. & Nunami, M. 2015 Cross-scale interactions between electron and ion scale turbulence in a tokamak plasma. Phys. Rev. Lett. 114, 255002.CrossRefGoogle Scholar
Mahajan, S.M. & Chen, C.Y. 1985 Plasma kinetic theory in action-angle variables. Phys. Fluids 28 (12), 35383545.CrossRefGoogle Scholar
Marin, M., Citrin, J., Garzotti, L., Valovic, M., Bourdelle, C., Camenen, Y., Casson, F., Ho, A., Koechl, F., Koechl, F. & JET Contributors 2021 Multiple-isotope pellet cycles captured by turbulent transport modelling in the JET tokamak. Nucl. Fusion 61 (3), 036042.CrossRefGoogle Scholar
Merz, F. & Jenko, F. 2008 Nonlinear saturation of trapped electron modes via perpendicular particle diffusion. Phys. Rev. Lett. 100, 035005.CrossRefGoogle ScholarPubMed
Merz, F. & Jenko, F. 2010 Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nucl. Fusion 50 (5), 054005.CrossRefGoogle Scholar
Mynick, H.E., Pomphrey, N. & Xanthopoulos, P. 2010 Optimizing stellarators for turbulent transport. Phys. Rev. Lett. 105, 095004.CrossRefGoogle ScholarPubMed
Navarro, A.B., Teaca, B., Told, D., Groselj, D., Crandall, P. & Jenko, F. 2016 Structure of plasma heating in gyrokinetic Alfvénic turbulence. Phys. Rev. Lett. 117, 245101.CrossRefGoogle ScholarPubMed
Nguyen, C., Garbet, X. & Smolyakov, A.I. 2008 Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks. Phys. Plasmas 15 (11), 112502.CrossRefGoogle Scholar
Nunami, M., Watanabe, T.-H. & Sugama, H. 2010 Gyrokinetic vlasov code including full three-dimensional geometry of experiments. Plasma Fusion Res. 5, 016016.CrossRefGoogle Scholar
Ottaviani, M. 1992 Scaling laws of test particle transport in two-dimensional turbulence. Europhys. Lett. 20 (2), 111116.CrossRefGoogle Scholar
Pueschel, M.J., Hatch, D.R., Ernst, D.R., Guttenfelder, W., Terry, P.W., Citrin, J. & Connor, J.W. 2019 On microinstabilities and turbulence in steep-gradient regions of fusion devices. Plasma Phys. Control. Fusion 61 (3), 034002.CrossRefGoogle Scholar
Pueschel, M.J., Jenko, F., Told, D. & Büchner, J. 2011 Gyrokinetic simulations of magnetic reconnection. Phys. Plasmas 18 (11), 112102.CrossRefGoogle Scholar
Pueschel, M.J., Told, D., Terry, P.W., Jenko, F., Zweibel, E.G., Zhdankin, V. & Lesch, H. 2014 Magnetic reconnection turbulence in strong guide fields: basic properties and application to coronal heating. Astrophys. J. Suppl. Ser. 213 (2), 30.CrossRefGoogle Scholar
Rogers, B.N., Kobayashi, S., Ricci, P., Dorland, W., Drake, J. & Tatsuno, T. 2007 Gyrokinetic simulations of collisionless magnetic reconnection. Phys. Plasmas 14 (9), 092110.CrossRefGoogle Scholar
Romanelli, M., Regnoli, G. & Bourdelle, C. 2007 Numerical study of linear dissipative drift electrostatic modes in tokamaks. Phys. Plasmas 14 (8), 082305.CrossRefGoogle Scholar
Samain, A. 1970 Dynamic stabilization of a confined plasma. Nucl. Fusion 10 (3), 325335.CrossRefGoogle Scholar
Smith, D.R., Guttenfelder, W., LeBlanc, B.P. & Mikkelsen, D.R. 2011 Identification of microtearing modes below the ion gyroscale in the national spherical torus experiment. Plasma Phys. Control. Fusion 53 (3), 035013.CrossRefGoogle Scholar
Stephens, C.D., Brzozowski III, R.W. & Jenko, F. 2017 On the limitations of gyrokinetics: magnetic moment conservation. Phys. Plasmas 24 (10), 102517.CrossRefGoogle Scholar
Stephens, C.D., Citrin, J., van de Plassche, K., Bourdelle, C., Tala, T., Salmi, A. & Jenko, F. 2021 Quasilinear modeling of collisional trapped electron modes. to be submitted to Nucl. Fusion.Google Scholar
Stephens, C.D., Garbet, X. & Jenko, F. 2020 Analytic guiding center formulas for bounce-transit motion in a concentric circular, finite inverse aspect ratio tokamak geometry. Phys. Plasmas 27 (5), 052504.CrossRefGoogle Scholar
Told, D., Cookmeyer, J., Muller, F., Astfalk, P. & Jenko, F. 2016 Comparative study of gyrokinetic, hybrid-kinetic and fully kinetic wave physics for space plasmas. New J. Phys. 18 (6), 065011.CrossRefGoogle Scholar
Told, D., Jenko, F., TenBarge, J.M., Howes, G.G. & Hammett, G.W. 2015 Multiscale nature of the dissipation range in gyrokinetic simulations of Alfvénic turbulence. Phys. Rev. Lett. 115, 025003.CrossRefGoogle ScholarPubMed
Waltz, R.E., Candy, J. & Fahey, M. 2007 Coupled ion temperature gradient and trapped electron mode to electron temperature gradient mode gyrokinetic simulations. Phys. Plasmas 14 (5), 056116.CrossRefGoogle Scholar
Wang, X.Y., Lin, Y., Chen, L. & Lin, Z. 2008 A particle simulation of current sheet instabilities under finite guide field. Phys. Plasmas 15 (7), 072103.CrossRefGoogle Scholar
Wan, W., Chen, Y. & Parker, S.E. 2005 Gyrokinetic delta-f simulation of the collisionless and semicollisional tearing mode instability. Phys. Plasmas 12 (1), 012311.CrossRefGoogle Scholar
Xanthopoulos, P. & Jenko, F. 2007 Gyrokinetic analysis of linear microinstabilities for the stellarator Wendelstein 7-X. Phys. Plasmas 14 (4), 042501.CrossRefGoogle Scholar