Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T06:26:58.065Z Has data issue: false hasContentIssue false

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS

Published online by Cambridge University Press:  07 February 2012

G. XIA
Affiliation:
Max Planck Institute for Physics, Munich, Germany ([email protected])
R. ASSMANN
Affiliation:
CERN, Geneva, Switzerland
R. A. FONSECA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
C. HUANG
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, USA
W. MORI
Affiliation:
University of California, Los Angeles, CA, USA
L. O. SILVA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
J. VIEIRA
Affiliation:
GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratório Associado, IST, Lisboa, Portugal
F. ZIMMERMANN
Affiliation:
CERN, Geneva, Switzerland
P. MUGGLI
Affiliation:
Max Planck Institute for Physics, Munich, Germany ([email protected])

Abstract

The proton bunch-driven plasma wakefield acceleration (PWFA) has been proposed as an approach to accelerate an electron beam to the TeV energy regime in a single plasma section. An experimental program has been recently proposed to demonstrate the capability of proton-driven PWFA by using existing proton beams from the European Organization for Nuclear Research (CERN) accelerator complex. At present, a spare Super Proton Synchrotron (SPS) tunnel, having a length of 600 m, could be used for this purpose. The layout of the experiment is introduced. Particle-in-cell simulation results based on realistic SPS beam parameters are presented. Simulations show that working in a self-modulation regime, the wakefield driven by an SPS beam can accelerate an externally injected ~10 MeV electrons to ~2 GeV in a 10-m plasma, with a plasma density of 7 × 1014 cm−3.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Esarey, E. et al. 2009 Rev. Mod. Phys. 81, 1229.Google Scholar
[2]Joshi, C. and Malka, V. 2010 New J. Phys. 12, 045003.Google Scholar
[3]Muggli, P. and Hogan, M. J. 2009 C. R. Phys. 10, 116.CrossRefGoogle Scholar
[4]Nakajima, K. et al. 1999 Nucl. Instrum. Meth. A 375, 593.Google Scholar
[5]Tajima, T. et al. 2009 Rev. Accel. Sci. Technol. 2, 201.CrossRefGoogle Scholar
[6]Leemans, W. P. et al. 2006 Nature Phys. 2, 696.CrossRefGoogle Scholar
[7]Leemans, W. P. et al. 2011 Proc. Particle Accelerator Conference, New York, USA, March 27–April 1.Google Scholar
[8]Blumenfeld, I. et al. 2007 Nature 445, 741.CrossRefGoogle Scholar
[9]Hogan, M. J. et al. 2010 New J. Phys. 12, 055030.CrossRefGoogle Scholar
[10]Braun, H. H. et al. 2003 Phys. Rev. Lett. 90, 224801.CrossRefGoogle Scholar
[11]Caldwell, A. et al. 2009 Nature Phys. 5, 363.CrossRefGoogle Scholar
[12]Ruth, R. et al. 1985 Part. Accel. 17, 171.Google Scholar
[13]Xia, G. et al. 2010 Advanced accelerator concepts. Proc. AIP Conf. 1299, 510.CrossRefGoogle Scholar
[14]Kumar, N. et al. 2010 Phys. Rev. Lett. 104, 255003.CrossRefGoogle Scholar
[15]Esarey, E. et al. 1994 Phys. Rev. Lett. 72, 2887.CrossRefGoogle Scholar
[16]Mori, W. B. 1997 IEEE J. Quantum Electron. 33, 1942.CrossRefGoogle Scholar
[17]Xia, G. and Caldwell, A. 2010 Proc. IPAC'10 Kyoto, Japan, p. 4395.Google Scholar
[18]Muggli, P. et al. 1999 IEEE Trans. Plasma Sci. 27, 791.CrossRefGoogle Scholar
[19]Arnush, D. and Chen, F. F. 1998 Phys. Plasmas 5, 1239.Google Scholar
[20]Huang, C. et al. 2006 J. Comp. Phys. 217, 658.CrossRefGoogle Scholar
[21]Fonseca, R. A. et al. 2002 Lect. Notes Comp. Sci. 2331, 342.Google Scholar
[22]Lotov, K. V. 2011 Phys. Plasmas 18, 024501.Google Scholar