Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T00:42:23.607Z Has data issue: false hasContentIssue false

Properties of waves in an ion-beam plasma system

Published online by Cambridge University Press:  13 March 2009

G. P. Zank
Affiliation:
Department of Mathematics and Applied Mathematics, University of Natal, King George V Avenue, Durban, Republic of South Africa
J. F. McKenzie
Affiliation:
Department of Mathematics and Applied Mathematics, University of Natal, King George V Avenue, Durban, Republic of South Africa

Abstract

In this paper a multi-fluid approach is used to describe electrostatic interactions in an ion-beam plasma system. The structure of the wave equation governing the system exhibits the anisotropic and dispersive nature of the waves, whose properties are analysed in terms of the dispersion relation. The main purpose of this paper is to classify the different waves that can arise in an ion-beam plasma system in a systematic fashion. The classification is facilitated by introducing a three-parameter CMA diagram that illustrates the topological changes in not only the wavenumber, or refractive-index, surface but also the ray-velocity surface. Furthermore, an analytic expression governing wave amplification in an ion-beam plasma is incorporated within the framework of a generalized CMA diagram. Such a description provides a simple interpretation for the onset of wave amplification in terms of a topological change in the refractive-index surface. It is hoped that by collating the wave properties in a unified form, many of the complicated wave features observed in an experiment may be interpreted more easily.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P. 1959 MIT Research Lab. Elect. Quart. Progress Report No. 54.Google Scholar
Al'pert, Ya. L., Budden, K. G., Moiseyer, B. S. & Stott, G. F. 1983 Phil. Trans. R. Soc. Lond. A 309, 503.Google Scholar
Baker, D. R. 1973 Phys. Fluids, 16, 1730.CrossRefGoogle Scholar
Budden, K. G. 1961 Radio Waves in the Ionosphere. Cambridge University Press.Google Scholar
Cap, F. F. 1978 Handbook on Plasma Instabilities, vol. 2. Academic.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
Clemmow, P. C. & Mullaly, R. F. 1955 The Physics of the Ionosphere. Physical Society, London.Google Scholar
Doveil, F. & Grésillon, D. 1975 Phys. Fluids, 18, 1756.Google Scholar
Forslund, D. W. & Shonk, C. R. 1970 Phys. Rev. Lett. 25, 281.CrossRefGoogle Scholar
Fried, B. D. & Wong, A. Y. 1966 Phys. Fluids, 9, 1804.Google Scholar
Fujita, T., Ohnuma, T. & Adachi, S. 1975 Phys. Fluids, 18, 1216.CrossRefGoogle Scholar
Greaves, R. G., Zank, G. P., Barrett, P. J. & McKenzie, J. F. 1986 Submitted to Phys. Lett. A.Google Scholar
Grésillon, D., Doveil, F. & Buzzi, J. M. 1975 Phys. Rev. Lett. 34, 197.Google Scholar
Hasegawa, A. 1971 Rev. Geophys. Space Sci. 9, 703.CrossRefGoogle Scholar
Lighthill, M. J. 1960 Phil. Trans. R. Soc. Land. A 252, 397.Google Scholar
McKenzie, J. F. & Marsh, E. 1982 Astrophys. Space Sci. 81, 295.CrossRefGoogle Scholar
Mikhailovski, A. B. 1974 Theory of Plasma Instabilities. Consultants Press, New York.CrossRefGoogle Scholar
Nezlin, M. V. 1971 Soviet Phys. Usp. 13, 608.CrossRefGoogle Scholar
Ohnuma, T. 1978 IEEE Trans. Plasma Sci. 64, 464.Google Scholar
Ohnuma, T. & Fujita, T. 1973 Phys. Fluids, 16, 2026.CrossRefGoogle Scholar
Ohnuma, T., Fujita, T. & Adachi, S. 1973 Phys. Rev. Lett. 31, 1177.CrossRefGoogle Scholar
Ohnuma, T., Fujita, T. & Adachi, S. 1976 Phys. Rev. Lett. 36, 471.CrossRefGoogle Scholar
Ohnuma, T. & Hatta, Y. 1966 J. Phys. Soc. Jpn, 21, 986.Google Scholar
Stenzel, R. L. 1977 Phys. Rev. Lett. 38, 394.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Stott, G. F. 1983 J. Aimos. Terr. Phys. 45, 219.Google Scholar
Sturrock, P. 1958 Phys. Rev. 112, 1488.Google Scholar
Sturrock, P. 1960 Phys. Rev. 114, 1426.Google Scholar
Sudan, R. N. 1965 Phys. Fluids, 8, 1899.CrossRefGoogle Scholar
Taylor, R. J. & Coroniti, F. V. 1972 Phys. Rev. Lett. 29, 37.Google Scholar
Walker, A. D. M. 1977 a J. Plasma Phys. 17, 467.Google Scholar
Walker, A. D. M. 1977 b J. Plasma Phys. 18, 339.Google Scholar
Walker, A. D. M. & McKenzie, J. F. 1985 Proc. R. Soc. Land. A 399, 217.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Zank, G. P. 1986 Ph.D. thesis, University of Natal.Google Scholar