Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:44:17.176Z Has data issue: false hasContentIssue false

Propagation of hydromagnetic waves through an anisotropic plasma

Published online by Cambridge University Press:  13 March 2009

Barbara Abraham-Shrauner
Affiliation:
Space Sciences Division, Ames Research Center, NASA, Moffett Field, California

Abstract

The propagation of small amplitude hydromagnetic waves of a collisionless, anisotropic plasma in a strong magnetic field is treated using the Chew—Goldberger—Low (CGL) fluid equations. The Alfvén, fast and slow magnetoacoustic, and entropy modes are analysed by phase speed and wave front diagrams and compared to their counterparts in magnetohydrodynamics (MHD) where collisions maintain an isotropic pressure. Two main classes of CGL waves are identified, pseudo-MHD and reverse-MHD where the latter has the slow wave speed greater than the Alfvén wave speed. Significant differences of the CGL hydromagnetic waves as compared to MHD waves are found which have special relevance for a study of infinitesimal and finite discontinuities in space plasmas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1962 Waves in Plasmas. New York: John Wiley and Sons.Google Scholar
Chandrasekhar, S., Kaufman, A. N. & Watson, K. M. 1958 Proc. Roy. Soc. A 245, 435.Google Scholar
Chew, G. F., Goldberger, M. L. & Low, F. E. 1956 Proc. Roy. Soc. A 236, 112.Google Scholar
Courant, R. & Hilbert, D. 1962 Methods of Mathematical Physics II. New York: Interscienee.Google Scholar
Ericson, W. B. & Bazer, J. 1960 Phys. Fluids, 3, 631.CrossRefGoogle Scholar
Friedrichs, K. O. & Kranzer, H. 1958 N.Y.U. Tech. Rept. N. MH-8.Google Scholar
Jeffrey, A. & Taniuti, T. 1964 Non-Linear Wave Propagation. New York: Academic Press.Google Scholar
Kato, K., Tajiri, M. & Taniuti, T. 1964 Propagation of hydromagnetic waves in collisionless plasma II. Institute of Plasma Physics, Nagoya University, Japan.Google Scholar
Kato, K. & Taniuti, T. 1963 Propagation of hydromagnetic waves in collisionless plasma I. Institute of Plasma Physics, Nagoya University, Japan.Google Scholar
Kulsrud, R. 1964 Advanced Plasma Theory, p. 54., ed. Rosenbluth, M..Google Scholar
Lehnert, B. 1964 Dynamics of Charged Particles. North-Holland Publishing Co.Google Scholar
Lundquist, S. 1952 Arlciv Fysik 5, 297.Google Scholar
Lust, R. 1960 Int. Summer Course in Plasma Physics, p. 201. Ed. by Wandel, C. F., Danish AEC.Google Scholar
Macdonald, G. J. 1964 Space Physics, p. 474, ed. LeGalley, D. P.. New York: John Wiley and Sons.Google Scholar
Parker, E. N. 1958 Astrophys. J. 128, 664.CrossRefGoogle Scholar
Rudakov, L. I. & Sagdeev, R. F. 1959 Plasma Physics and the Problem of Controlled Thermonuclear Reactions III, p. 321.Google Scholar
Spitzer, L. 1962 Physics of Fully Ionized Gases. Interseience Publishers.Google Scholar
Spreiter, J. R., Summers, A. & Alksne, A. 1967 (Planetary and Space Sciences, in the Press.)Google Scholar
Stix, T. H. 1962 The Theory of Plasma Waves, p. 196. New York: McGraw-Hill.Google Scholar
Talwar, S. P. 1965 Phys. Fluids 8, 1295.CrossRefGoogle Scholar
Ter, Haar D. 1954 Elements of Statistical Mechanics, p. 20. New York: Rinehart and Co.Google Scholar
Thompson, W. B. 1962 An Introduction to Plasma Physics. New York: Addison-Wesley.CrossRefGoogle Scholar
Vedeov, A. A. & Sagdeev, R. Z. 1959 Plasma Physics and Problems of Controlled Thermonuclear Reactions III, p. 332.Google Scholar