Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:54:52.223Z Has data issue: false hasContentIssue false

Propagation of electronic longitudinal modes in a non-Maxwellian plasma

Published online by Cambridge University Press:  13 March 2009

D. Henry
Affiliation:
D épartement CPM /PMT, C.N.E.T. Route de Tr égastol, 22 Lannion, France
J. P. Trguier
Affiliation:
D épartement CPM /PMT, C.N.E.T. Route de Tr égastol, 22 Lannion, France

Abstract

The experimental modifications of the classical Landau mode (modification of the first pole, and occurrence of a new propagating mode below the plasma frequency) are due to a peculiar distribution function. This distribution function is approximated by a simple model (i.e. a Maxwellian function plus a water-bag function). A numerical calculation with this model gives new dispersion curves, which agree with experiment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexeff, I. & Jones, W. D. 1965 Phys. Rev. Lett. 15, 286.CrossRefGoogle Scholar
Aubert, A. E. & Van, Dael W. 1971 CIPIG, Oxford, p. 96.Google Scholar
Bertrand, P. & Feix, M. R. 1968 Phys. Lett. A 28, 68.CrossRefGoogle Scholar
Buzzi, M. 1972 J. Phys. (To be published.)Google Scholar
Demuliere, P., Guillemot, M., Olivain, J., Perceval, F. & Quemeneur, A. 1971 Proc. Conf. Quiescent Plasmas, Elsinore, p. 151.Google Scholar
Deparckh, D. C. 1962 J. Electron Control, 13, 417.CrossRefGoogle Scholar
Derfler, H. & Simonen, T. 1966 Phys. Rev. Lett. 17, 172.CrossRefGoogle Scholar
Franklin, R. N. 1971 CIPIG, Oxford, p. 269.Google Scholar
Henry, D. & Treguier, J. P. 1972 Phys. Lett. A 38, 115.CrossRefGoogle Scholar
Hohl, F. & Feix, M. R. 1967 Astrophys. J. 147, 1164.CrossRefGoogle Scholar
Kaway, Y. & Kondo, K. 1971 J. Phys. Soc. Japan, 30, 857.CrossRefGoogle Scholar
Kaway, Y., Kondo, K., Saka, O. & Kawabe, T. 1971 Phys. Lett. A 36, 149.CrossRefGoogle Scholar
Landau, L. 1946 J. Phys. U.S.S.R. 10, 45.Google Scholar
Le, Coquil E., Henry, D., Le, Meur J. P., Castrec, C. & Treguier, J. P. 1971 Rev. Phys. Appliqu ée, 6, 467.Google Scholar
Malmberg, J. H. & Wharton, C. B. 1964 Phys. Rev. Lett. 13, 184.CrossRefGoogle Scholar
Michelsen, P. 1971 Proc. Conf. Quiescent Plasmas, Elsinore, p. 382.Google Scholar
Roberts, K. V. & Berk, H. L. 1967 Phys. Rev. Lett. 101, 297.CrossRefGoogle Scholar
Sessler, J. M. & Pearson, G. A. 1967 Phys. Rev. 162, 108.CrossRefGoogle Scholar
Treguier, J. P. & Henry, D. 1972 Plasma Phys. (To be published.)Google Scholar
Tutter, M. 1968 Plasma Phys. 10, 775.CrossRefGoogle Scholar
Van, Hoven G. 1966 Phys. Rev. Lett. 17, 169.Google Scholar