Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T15:01:18.261Z Has data issue: false hasContentIssue false

Probability-maximization theory for a highly turbulent beam-plasma system

Published online by Cambridge University Press:  13 March 2009

Tadas Nakamura
Affiliation:
Geophysics Research Laboratory, University of Tokyo, Tokyo 113, Japan
Takashi Yamamoto
Affiliation:
Geophysics Research Laboratory, University of Tokyo, Tokyo 113, Japan

Abstract

A new approach to the theoretical study of turbulent behaviour of a collisionless plasma is developed. This approach is based upon the concept or probability maximization originally applied to collisional gases by Boltzmann. The probability-maximization theory deals with stochastic processes in a steady turbulent plasma by solving for the most-probable distribution. Our theory as applied to counter-streaming electron beams can quantitatively predict beam retardation, i.e. a decrease in the mean velocity of electrons injected from the system boundary. This is also in agreement with the results of a one-dimensional numerical experiment performed for such a beam-plasma system.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akaike, H. 1985 A Celebration of Statistics, p. 1 (ed. Atkinson, A. C. & Fienberg, S. E.). Springer.Google Scholar
Ambrosiano, J. & Vahala, G. 1981 Phys. Fluids, 24, 2253.CrossRefGoogle Scholar
Balescu, R. 1975 Equilibrium and Non-equilibrium Statistical Mechanics. Wiley.Google Scholar
Boltzmann, L. 1878 Wiener Berichte, 76, 373.Google Scholar
Book, D. L., McDonald, B. E. & Fisher, S. 1975 Phys. Rev. Lett. 34, 4.CrossRefGoogle Scholar
Carnevale, G., Frisch, U. & Salmon, R. 1981 J. Phys. A 14, 1701.CrossRefGoogle Scholar
Jaynes, E. T. 1978 The Maximum Entropy Formalism, p. 15 (ed. Levine, R. D. and Tribus, M.). M.I.T. Press.Google Scholar
Joyce, G. & Montgomery, D. 1973 J. Plasma Phys. 10, 107.CrossRefGoogle Scholar
Kaufman, A. N. 1986 Phys. Fluids, 29, 2326.CrossRefGoogle Scholar
Kraichnan, R. H. 1967 Phys. Fluids, 10, 1417.CrossRefGoogle Scholar
Lee, T. D. 1952 Q. Appl. Maths, 10, 69.CrossRefGoogle Scholar
McDonald, B. E. 1974 J. Comp. Phys. 16, 360.CrossRefGoogle Scholar
Montgomery, D. 1985 Maximum Entropy and Bayesian Methods in Inverse Problems, p. 455 (ed. Smith, C. R. and Grandy, W. T.). Reidel.CrossRefGoogle Scholar
Montgomery, D. & Joyce, G. 1974 Phys. Fluids 17, 1139.CrossRefGoogle Scholar
Montgomery, D., Turner, L. & Vahala, G. 1979 J. Plasma Phys. 21, 239.CrossRefGoogle Scholar
Pointin, Y. B. & Lundgren, T. S. 1976 Phys. Fluids, 19, 1461.CrossRefGoogle Scholar
Sagdeev, A. A. & Galeev, R. S. 1969 Nonlinear Plasma Theory. Benjamin.Google Scholar
Ting, A. C., Chen, H. H. & Lee, Y. C. 1984 Phys. Rev. Lett. 53, 1348.CrossRefGoogle Scholar
Van Kampen, N. G. 1964 Phys. Rev. 135, A 362.CrossRefGoogle Scholar
Yamamoto, T. & Kan, J. R. 1986 J. Geophys. Res. 91, 7119.CrossRefGoogle Scholar