Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:33:45.707Z Has data issue: false hasContentIssue false

Prediction of potential well structure formed in spherical inertial electrostatic confinement fusion devices with various parameters

Published online by Cambridge University Press:  26 November 2012

M. GHASEMI
Affiliation:
Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran ([email protected])
M. HABIBI
Affiliation:
Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran ([email protected])
R. AMROLLAHI
Affiliation:
Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran ([email protected])

Abstract

In this paper, the theoretical analysis regarding potential structure on the inertial electrostatic confinement fusion devices has been carried out. Negatively biased grid as cathode placed at the center of the device surrounded by anode is assumed. The device is an ion-injection system and electrons may be emitted from the surface of the cathode. So the existence of both ion and electron currents inside the cathode is considered. Dependence of radial potential well structure on some important parameters as the spreads in the normalized total and angular electron and ion energies, the ratio of ion circulating current to electron circulating current, ion perveance, and grid transparency are investigated by solving Poisson equation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Black, W. M. and Klevans, E. H. 1974 Theory of potential-well formation in an electrostatic confinement device. J. Appl. Phys. 45, 2502.CrossRefGoogle Scholar
Black, W. M. and Robinson, J. W. 1974 Measuring rotationally symmetric potential profiles with an electron-beam probe. J. Appl. Phys. 45, 2497.CrossRefGoogle Scholar
Cherrington, B. E. and Swanson, D. A. 1977 Theory of the multiple potential well structure created by bipolar injection in spherical geometry. Phys. Fluids 20, 2139.CrossRefGoogle Scholar
Cipiti, B. B. and Kulcinski, G. L. 2003 Embedded D-3He fusion reactions and medical isotope production in an inertial electrostatic confinement device. Fusion Sci. Technol. 44, 534.CrossRefGoogle Scholar
Dolan, T. J. 1975 Electrostatic-inertial plasma confinement. PhD thesis. University of Illinois, Urbana-Champaign.Google Scholar
Dolan, T. J., Verdeyen, J. T., Meeker, D. J. and Cherrington, B. E. 1972 electrostatic-inertial plasma confinement. J. Appl. Phys. 43, 1590.CrossRefGoogle Scholar
Elmore, W. C., Tuck, J. L. and Watson, K. M. 1959 On the inertial-electrostatic confinement of a plasma. Phys. Fluids 2, 239246.CrossRefGoogle Scholar
Evstatiev, E. G., Nebel, R. A., Chacon, L., Park, J. and Lapenta, G. 2007 Space charge neutralization in inertial electrostatic confinement plasmas. Phys. Plasmas 14, 042701.CrossRefGoogle Scholar
Farnsworth, P. T. 1966 Electric discharge device for producing interactions between nuclei. US Patent 3 258 402.Google Scholar
Gu, Y. and Miley, G. H. 2000 Experimental study of potential structure in a spherical IEC fusion device. IEEE Trans. Plasma. Sci. 28, 331346.Google Scholar
Hirsch, R. L. 1967 Inertial electrostatic confinement of ionized fusion gases. J. Appl. Phys. 38, 4522.CrossRefGoogle Scholar
Hirsch, R. L. 1968 Experimental studies of a deep negative electrostatic potential well in spherical geometry. Phys. Fluids 11, 2486.CrossRefGoogle Scholar
Hockney, R. W. 1968 Formation and stability of virtual electrodes in a cylinder. J. Appl. Phys. 39, 4166.CrossRefGoogle Scholar
Hu, K. M. and Klevans, E. H. 1974 On the theory of electrostatic confinement of plasmas with ion injection. Phys. Fluids 17, 227.CrossRefGoogle Scholar
Kulcinski, G. L. 1996 Near term commercial opportunities from long range fusion research. Fusion Technol. 30, 411.CrossRefGoogle Scholar
Matsuo, T., Matsuura, H., Nakao, Y. and Kudo, K. 2004 Dependence of neutron/proton production rate on discharged current in spherical inertial electrostatic confinement plasma. J. Plasma Fusion Res. 6, 731734.Google Scholar
Matsuura, H., Funakoshi, K. and Nakao, Y. 2003 Correlation between ion/electron distribution functions and neutron production rate in spherical inertial electrostatic confinement plasmas. Nucl. Fusion 43, 989.CrossRefGoogle Scholar
Matsuura, H., Takaki, T., Funakoshi, K., Nakao, Y. and Kudo, K. 2000 Ion distribution function and radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Nucl. Fusion 40, 12.CrossRefGoogle Scholar
Matsuura, H., Takaki, T., Nakao, Y. and Kudo, K. 2001 Radial profile of neutron production rate in spherical inertial electrostatic confinement plasmas. Fusion Technol. 39, 1167.CrossRefGoogle Scholar
Meyer, R. M., Loyalka, S. K. and Prelas, M. A. 2005 Potential well structure in spherical inertial electrostatic confinement device. IEEE Trans. Plasma Sci. 33, 1377.CrossRefGoogle Scholar
Momota, H. and Miley, G. H. 2001 Virtual cathode in a stationary spherical inertial electrostatic confinement. Fusion Sci. Technol. 40, 56.CrossRefGoogle Scholar
Nadler, J. H. 1992 Space-charge dynamics and neutron generation in an inertial- electrostatic confinement device. PhD thesis. University of Illinois, Urbana-Champaign.Google Scholar
Nebel, R. A., Stange, S., Park, J., Taccetti, J. M., Murali, S. K. and Garcia, C. E. 2005 Theoretical and experimental studies of kinetic equilibrium and stability of the virtual cathode in an electron injected inertial electrostatic confinement device. Phys. Plasmas 12, 012701.CrossRefGoogle Scholar
Nevins, W. M. 1995 Can inertial electrostatic confinement work beyond the ion-ion collisional time scale? Phys. Plasmas 2, 3804.CrossRefGoogle Scholar
Ohnishi, M., Sato, K. H., Yamamoto, Y. and Yoshikawa, K. 1997 Correlation between potential well structure and neutron production in inertial electrostatic confinement fusion. Nucl. Fusion 37, 611.CrossRefGoogle Scholar
Ohnishi, M., Yamamoto, Y., Hasegawa, M., Yoshikawa, K. and Miley, G. H. 1998 Study on an inertial electrostatic confinement fusion as a portable neutron source. Fusion Eng. Des. 42, 207211.CrossRefGoogle Scholar
Swanson, D. A. 1975 Theoretical study of a spherical inertial electrostatic plasma confinement device. PhD thesis. University of Illinois, Urbana-Champaign.Google Scholar
Swanson, D. A., Cherrington, B. E. and Verdeyen, J. T. 1973a Potential well structure in an inertial electrostatic plasma confinement device. Phys. Fluids 16, 1939.CrossRefGoogle Scholar
Swanson, D. A., Cherrington, B. E. and Verdeyen, J. T. 1973b Multiple potential-well structure created by electron injection in spherical geometry. Appl. Phys. Lett. 23, 125.CrossRefGoogle Scholar
Taniuchi, Y., Matsumura, Y., Taira, K., Utsumi, M., Chiba, M., Shirakawa, T. and Fujii, M. 2010 Effect of grid cathode structure on a low-input-power inertial electrostatic confinement fusion device. J. Nucl. Sci. Technol. 47, 626.CrossRefGoogle Scholar
Thorson, T. A., Durst, R. D., Fonck, R. J. and Wainwright, L. P. 1997 Convergence electrostatic potential, and density measurement in a spherical convergent ion focus. Phys. Plasmas 4, 4.CrossRefGoogle Scholar
Tzonev, I. V., DeMora, J. M. and Miley, G. H. 1996 Effect of large ion angular momentum spread and high current on inertial electrostatic confinement potential structures. Paper 16th IEEE/NPSS Symp, Urbana, IL, 30 September–5 October 1995. Fusion Engineering 2, 14761481.CrossRefGoogle Scholar
Weidner, J. W. 2003 The production of 13N from inertial electrostatic confinement fusion. MS thesis, University of Wisconsin-Madison.CrossRefGoogle Scholar
Wong, S. K. and Krall, N. A. 1992 Potential well formation by injection of electrons with various energy distributions into a sphere or a slab. Phys. Fluids B 4, 4140.CrossRefGoogle Scholar
Yamamoto, Y., Hasegawa, M., Ohnishi, M., Yoshikawa, K. and Inoue, N. 1997 Preliminary studies of potential well measurement in inertial-electrostatic confinement fusion experiments. Paper 17th IEEE/NPSS Symp. Fusion Engineering 2, 745748.Google Scholar
Yoshinaga, S., Matsuura, H., Nakao, Y. and Kudo, K. 2006 Energy distribution of fast neutral atoms and neutron production rate in inertial electrostatic confinement device. J. Plasma Fusion Res. 7, 127130.Google Scholar