Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T20:15:55.227Z Has data issue: false hasContentIssue false

Practical gyrokinetics

Published online by Cambridge University Press:  16 May 2019

Peter J. Catto*
Affiliation:
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

Thousands of gyrokinetic papers have been published since the introduction of the gyrokinetic change of variables. The intent here is not to review the field, but rather the goal is to present a tutorial providing insight into why gyrokinetics is an appropriate description of turbulent transport. The focus is on turbulent transport in axisymmetric tokamaks, but many of the ideas and techniques are applicable to stellarators and other magnetic fusion devices with nested surfaces of constant pressure. Besides the origins of gyrokinetics and recent insights, gyrokinetic orderings and gyrokinetic variables are summarized. Then a compact, but careful, derivation of the simplest electrostatic gyrokinetic equation for tokamaks is presented, along with a brief mention of gyrokinetics for stellarators. The advantages of assuming scale separation between the finer spatial scales and faster time variation of the turbulence and the global behaviour and slow temporal evolution of the background are stressed. Moreover, the procedure for removing the adiabatic or Maxwell–Boltzmann response is emphasized. Scale separation allows the near Maxwellian behaviour of the background and the rapid variation of the turbulence to be described by separate, local gyrokinetic equations. The turbulent fluctuations are found by solving the nonlinear gyrokinetic equation for the non-adiabatic portion of the fluctuating distribution function. Also, generalizations of the gyrokinetic equation so that it retains electromagnetic and flow modifications are considered in detail along with some symmetry properties. In addition, ambipolarity, particle transport and heat transport are addressed, along with a discussion of the complications associated with describing momentum transport and profile evolution.

Type
Tutorial
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Able, I. G., Plunk, G. G., Wang, E., Barnes, M., Cowley, S. C., Dorland, W. & Schekochihin, A. A. 2013 Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows. Rep. Prog. Phys. 76, 116201; 69 pp.Google Scholar
Antonsen, T. M. & Lane, B. 1980 Kinetic equations for low frequency instabilities in inhomogeneous plasmas. Phys. Fluids 23, 12051214.Google Scholar
Barnes, M., Parra, F. I. & Schekochihin, A. A. 2011 Critically balanced ion temperature gradient turbulence in fusion plasmas. Phys. Rev. Lett. 107, 115003115004.Google Scholar
Brizard, A. 1989 Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic co-ordinates. J. Plasma Phys. 41, 541559.Google Scholar
Calvo, I. & Parra, F. I. 2012 Long-wavelength limit of gyrokinetics in a turbulent tokamak and its intrinsic ambipolarity. Plasma Phys. Control. Fusion 54, 115007, 33 pp.Google Scholar
Calvo, I. & Parra, F. I. 2015 Radial transport of toroidal angular momentum in tokamaks. Plasma Phys. Control. Fusion 57, 075006, 19 pp.Google Scholar
Candy, J. & Waltz, R. E. 2003 An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys. 186, 545581.Google Scholar
Catto, P. J. 1978 Linearized gyro-kinetics. Plasma Phys. 20, 719722.Google Scholar
Catto, P. J., Bernstein, I. B. & Tessarotto, M. 1987 Ion transport in toroidally rotating tokamak plasmas. Phys. Fluids 30, 27842795.Google Scholar
Catto, P. J., Lee, J.-P. & Ram, A. K. 2017 A quasilinear operator retaining magnetic drift effects in tokamak geometry. J. Plasma Phys. 83, 905830611, 29 pp.Google Scholar
Catto, P. J., Parra, F. I. & Pusztai, I. 2017 Electromagnetic zonal flow residual responses. J. Plasma Phys. 83, 905830402, 38 pp.Google Scholar
Catto, P. J., Simakov, A. N., Parra, F. I. & Kagan, G. 2008 Electrostatic turbulence in tokamaks on transport time scales. Plasma Phys. Control. Fusion 50, 115006, 21 pp.Google Scholar
Catto, P. J., Tang, W. M. & Baldwin, D. E. 1981 Generalized gyrokinetics. Plasma Phys. 23, 639650.Google Scholar
Catto, P. J. & Tsang, K. T. 1977 Linearized gyro-kinetic equation with collisions. Phys. Fluids 20, 396401.Google Scholar
Chen, Y. & Parker, S. E. 2003 A $\unicode[STIX]{x1D6FF}$ f particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations. J. Comput. Phys. 189, 463475.Google Scholar
Dannert, T. & Jenko, F. 2005 Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Phys. Plasmas 12, 072309-8.Google Scholar
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969983.Google Scholar
Dimits, A. M., Lodestro, L. L. & Dubin, D. H. E. 1992 Gyroaveraged equations for both the gyrokinetic and drift-kinetic regimes. Phys. Fluids B 4, 271277.Google Scholar
Dimits, A. M., Williams, T. J., Byers, J. A. & Cohen, B. I. 1996 Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks. Phys. Rev. Lett. 77, 7174.Google Scholar
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 55795582.Google Scholar
Dubin, D. H. E., Krommes, J. A., Oberman, C. & Lee, W. W. 1983 Nonlinear gyrokinetic equations. Phys. Fluids 26, 35243535.Google Scholar
Frieman, E. A. & Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.Google Scholar
Hahm, T. S., Lee, W. W. & Brizard, A. 1988 Nonlinear gyrokinetic theory for finite-beta plasmas. Phys. Fluids 31, 19401948.Google Scholar
Hahm, T. S. 1988 Nonlinear gyrokinetic equations for tokamak microturbulence. Phys. Fluids 31, 26702673.Google Scholar
Hazeltine, R. D. 1973 Recursive derivation of the drift-kinetic equation. Plasma Phys. 15, 7780.Google Scholar
Heikkinen, J. A., Kiviniemi, T. P., Kurki-Suonio, T., Peeters, A. G. & Sipilä, S. K. 2001 Particle simulation of the neoclassical plasmas. J. Comput. Phys. 173, 527548.Google Scholar
Hinton, F. L. & Rosenbluth, M. N. 1999 Dynamics of axisymmetric (E $\times$ B) and poloidal flows in tokamaks. Plasma Phys. Control. Fusion 41, A653A662.Google Scholar
Hinton, F. L. & Wong, S. K. 1985 Neoclassical ion transport in rotating axisymmetric plasmas. Phys. Fluids 28, 30823098.Google Scholar
Hitchcock, D. A. & Hazeltine, R. D. 1978 Gyrokinetic equation for low and high frequency problems. Plasma Phys. 20, 12411252.Google Scholar
Kagan, G. & Catto, P. J. 2008 Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers. Plasma Phys. Control. Fusion 50, 085010, 25 pp.Google Scholar
Kagan, G. & Catto, P. J. 2010 Enhancement of the bootstrap current in a tokamak pedestal. Phys. Rev. Lett. 105, 045002-4.Google Scholar
Kotschenreuther, M., Rewoldt, G. & Tang, W. M. 1995 Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities. Comput. Phys. Commun. 88, 128140.Google Scholar
Kovrizhnykh, L. M. 1969 Transport phenomena in toroidal magnetic systems. Sov. Phys. JETP 29, 475482.Google Scholar
Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T. M., McMillan, B. F., Sauter, O., Appert, K., Idomura, Y. & Villard, L. 2007 A global collisionless PIC code in magnetic coordinates. Comp. Phys. Commun. 177, 409425.Google Scholar
Lee, W. W. 1983 Gyrokinetic approach in particle simulation. Phys. Fluids 26, 556562.Google Scholar
Lee, X. S., Myra, J. R. & Catto, P. J. 1983 General frequency gyrokinetics. Phys. Fluids 26, 223229.Google Scholar
Lin, Z., Ethier, S., Hahm, T. S. & Tang, W. M. 2002 Size scaling of turbulent transport in magnetically confined plasmas. Phys. Rev. Lett. 88, 195004-4.Google Scholar
Monreal, P., Calvo, I., Sánchez, E., Parra, F. I., Bustos, A., Könies, A., Kleiber, R. & Görler, T. 2016 Residual zonal flows in tokamaks and stellarators at arbitrary wavelengths. Plasma Phys. Control. Fusion 58, 045018, 15 pp.Google Scholar
Parra, F. I. & Barnes, M. 2015a Intrinsic rotation in tokamaks: theory. Plasma Phys. Control. Fusion 57, 045002, 45 pp.Google Scholar
Parra, F. I. & Barnes, M. 2015b Equivalence of two different approaches to global $\unicode[STIX]{x1D6FF}$ f gyrokinetic simulations. Plasma Phys. Control. Fusion 57, 054003, 11 pp.Google Scholar
Parra, F. I., Barnes, M., Calvo, I. & Catto, P. J. 2012 Intrinsic rotation with gyrokinetic models. Phys. Plasmas 19, 056116, 23 pp.Google Scholar
Parra, F. I., Barnes, M. & Catto, P. J. 2011 Sources of intrinsic rotation in the low-flow ordering. Nucl. Fusion 51, 113001, 10 pp.Google Scholar
Parra, F. I., Barnes, M. & Peeters, A. G. 2011 Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks. Phys. Plasmas 18, 062501-14.Google Scholar
Parra, F. I. & Calvo, I. 2011 Phase-space Lagrangian derivation of electrostatic gyrokinetics in general geometry. Plasma Phys. Control. Fusion 53, 045001, 49 pp.Google Scholar
Parra, F. I. & Catto, P. J. 2008 Limitations of gyrokinetics on transport time scales. Plasma Phys. Control. Fusion 50, 065014, 23 pp.Google Scholar
Parra, F. I. & Catto, P. J. 2009 Vorticity and intrinsic ambipolarity in turbulent tokamaks. Plasma Phys. Control. Fusion 51, 095008, 38 pp.Google Scholar
Parra, F. I. & Catto, P. J. 2010a Turbulent transport of toroidal angular momentum in low flow gyrokinetics. Plasma Phys. Control. Fusion 52, 045004, 32 pp; Erratum 2010 Plasma Phys. Control. Fusion 52, 059801.Google Scholar
Parra, F. I. & Catto, P. J. 2010b Transport of momentum in full f gyrokinetics. Phys. Plasmas 17, 056106-11.Google Scholar
Parra, F. I. & Catto, P. J. 2010c Non-physical momentum sources in slab geometry gyrokinetics. Plasma Phys. Control. Fusion 52, 085011, 12 pp.Google Scholar
Peeters, A. G., Strintzi, D., Camenen, Y., Angioni, C., Casson, F. J., Hornsby, W. A. & Snodin, A. P. 2009 Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak. Phys. Plasmas 16, 042310-10.Google Scholar
Pueschel, M. J., Kammerer, M. & Jenko, F. 2008 Gyrokinetic turbulence simulations at high plasma beta. Phys. Plasmas 15, 102310, 10 pp.Google Scholar
Rewoldt, G., Tang, W. M. & Chance, M. S. 1982 Electromagnetic kinetic toroidal eigenmodes for general magnetohydrodynamicequilibria. Phys. Fluids 25, 480490.Google Scholar
Rosenbluth, M. N. & Hinton, F. L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724727.Google Scholar
Rutherford, P. H. 1970 Collisional diffusion in an axisymmetric torus. Phys. Fluids 13, 482489.Google Scholar
Rutherford, P. H. & Frieman, E. A. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569585.Google Scholar
Sugama, H., Okamoto, M., Horton, W. & Wakatani, M. 1996 Transport processes and entropy production in toroidal plasmas with gyrokinetic electromagnetic turbulence. Phys. Plasmas 3, 23792394.Google Scholar
Sugama, H. & Horton, W. 1998 Nonlinear electromagnetic gyrokinetic equation for plasma with large mean flows. Plasma Physics 5, 25602573.Google Scholar
Sugama, H. & Watanabe, T.-H. 2006 Collisionless damping of geodesic acoustic modes. J. Plasma Phys. 72, 825828.Google Scholar
Sugama, H., Watanabe, T. H., Nunami, M. & Nishimura, S. 2011 Momentum balance and radial electric fields in axisymmetric and nonaxisymmetric toroidal plasmas. Plasma Phys. Control. Fusion 53, 024004, 17 pp.Google Scholar
Sydora, R. D. 1995 Toroidal gyrokinetic particle simulations of core fluctuations and transport. Phys. Scr. 52, 474480.Google Scholar
Taylor, J. B. & Hastie, R. J. 1968 Stability of general plasma equilibria - I Formal theory. Plasma Phys. 10, 479494.Google Scholar
Wang, W. X., Lin, Z., Tang, W. M., Lee, W. W., Ethier, S., Lewandowski, J. L. V., Rewoldt, G., Hahm, T. S. & Manickam, J. 2006 Gyro-kinetic simulation of global turbulent transport properties in tokamak experiments. Phys. Plasmas 13, 092505-12.Google Scholar
Xiao, Y. & Catto, P. J. 2006 Plasma shaping effects on the collisionless residual zonal flow level. Phys. Plasmas 13, 082307-5.Google Scholar
Xiao, Y. & Catto, P. J. 2006 Short wavelength effects on the collisionless neoclassical polarization and residual zonal flow level. Phys. Plasmas 13, 102311-11.Google Scholar
Xiao, Y., Catto, P. J. & Dorland, W. 2007 Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residuals. Phys. Plasmas 14, 055910-6.Google Scholar
Xiao, Y., Catto, P. J. & Molvig, K. 2007 Collisional damping for ion temperature gradient mode driven zonal flow. Phys. Plasmas 14, 032302-11.Google Scholar