Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T13:55:38.618Z Has data issue: false hasContentIssue false

Plasma processes at comet Churyumov–Gerasimenko: Expectations for Rosetta

Published online by Cambridge University Press:  04 November 2013

D. A. MENDIS
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego La Jolla, CA 92037-0407, USA ([email protected])
M. HORÁNYI
Affiliation:
Laboratory for Atmospheric and Space Physics, and Department of Physics, University of Colorado, Boulder, CO 80303, USA

Abstract

The Rosetta–Philae mission to comet 67P/Churyumov–Gerasimenko in 2014 will provide a unique opportunity to observe the variable nature of the interaction of a comet with the solar radiation and the solar wind, as the comet approaches the Sun. In this short paper we will focus on the varying global structure of the cometary plasma environment. Specifically we make predictions on the varying locations of the two basic transitions in the global, contaminated solar wind flow toward the comet: the outer bow shock and the ionopause.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biermann, L., Brosowski, B. and Schmidt, H. U. 1967 The interactions of the solar wind with a comet. Sol. Phys. 1, 254284.CrossRefGoogle Scholar
de Almeida, A. A., Trevisan Sanzovo, D., Sanzovo, G. C., Boczko, R. and Miguel Torres, R. 2009 Comparative study of productivity of the Rosetta target Comet 67P/Churyumov-Gerasimenko. Adv. Space Res. 43, 19932000.CrossRefGoogle Scholar
Flammer, K. R. 1991 The global interaction of comets with the solar wind. In: IAU Colloq. 116: Comets in the Post-Halley Era, Astrophysics and Space Science Library, Vol. 167 (eds. Newburn, R. L. Jr., Neugebauer, M. and Rahe, J.), Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 11251144.Google Scholar
Flammer, K. R., Mendis, D. A., Whipple, E. C. and Northrop, T. G. 1991 A self-consistent model for the particles and fields upstream of an outgassing comet. I - Gyrotropic and isotropic ion distributions. J. Geophys. Res. 96, 15907.CrossRefGoogle Scholar
Galeev, A. A., Cravens, T. E. and Gombosi, T. I. 1985 Solar wind stagnation near comets. Astrophys. J. 289, 807819.CrossRefGoogle Scholar
Ip, W.-H. and Axford, W. I. 1982 Theories of physical processes in the cometary comae and ion tails. In: IAU Colloq. 61: Comet Discoveries, Statistics, and Observational Selection (ed. Wilkening, L. L.), Tucson, AZ: The University of Arizona Press, pp. 588634.Google Scholar
Ip, W. H. and Axford, W. I. 1990 The plasma. In: Physics and Chemistry of Comets (ed. Huebner, W. F.), Berlin, Germany: Springer-Verlag, pp. 177232.CrossRefGoogle Scholar
Ip, W.-H. and Mendis, D. A. 1978 The flute instability as the trigger mechanism for disruption of cometary plasma tails. Astrophys. J. 223, 671673.CrossRefGoogle Scholar
Mendis, D. A. 2007 Solar-comet interactions. Handbook of the Solar-Terrestrial Environment (eds. Kamide, Y. and Chian, A.). Berlin: Springer-Verlag, pp. 494514Google Scholar
Mendis, D. A. and Horányi, M. 2013 Dusty plasma effects in comets: expectations for Rosetta. Rev. Geophys. 51, 5375.CrossRefGoogle Scholar
Mendis, D. A., Houpis, H. L. F. and Marconi, M. L. 1985 The physics of comets. Fund. Cosmic Phys. 10, 1380.Google Scholar