Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T12:50:23.208Z Has data issue: false hasContentIssue false

Plasma ion heating by cryogenic pellet injection

Published online by Cambridge University Press:  11 January 2019

Pavel Aleynikov*
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
Boris N. Breizman
Affiliation:
Institute for Fusion Studies, University of Texas, Austin, USA
Per Helander
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
Yuriy Turkin
Affiliation:
Max-Planck-Institut für Plasmaphysik, Greifswald, Germany
*
Email address for correspondence: [email protected]

Abstract

The injection of cryogenic pellets into a magnetically confined plasma is shown to be accompanied by a considerable transfer of thermal energy from the electrons in the background plasma to the ions. The resulting ion heating can be significant, particularly in plasmas with disparate electron and ion temperatures, and can affect the energy balance of the plasma. In recent Wendelstein 7-X experiments, this mechanism can account for a substantial fraction of the ion heating power during pellet injection.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barenblatt, G. I. 1996 Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press.Google Scholar
Braginskii, S. I. 1965 Transport processes in a plasma. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 1, p. 205. Consultants Bureau, New York.Google Scholar
Futatani, S., Huijsmans, G., Loarte, A., Baylor, L. R., Commaux, N., Jernigan, T. C., Fenstermacher, M. E., Lasnier, C., Osborne, T. H. & Pegourié, B. 2014 Non-linear MHD modelling of ELM triggering by pellet injection in DIII-D and implications for ITER. Nucl. Fusion 54 (7), 073008.Google Scholar
Gurevich, A. V. 1968 Distribution of captured particles in a potential well in the absence of collisions. Sov. Phys. JETP 26, 575.Google Scholar
Gurevich, A. V., Pariǐskaya, L. V. & Pitaevskiǐ, L. P. 1966 Self-similar motion of rarefied plasma. Sov. Phys. JETP 22, 449.Google Scholar
Gurevich, A. V. & Pitaevskii, L. P. 1986 Nonlinear dynamics of rarefied plasmas and ionospheric aerodynamics. In Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 10, p. 1. Consultants Bureau.Google Scholar
Helander, P. & Sigmar, D. J. 2002 Collisional Transport in Magnetized Plasmas. Cambridge University Press.Google Scholar
Milora, S. L., Houlberg, W. A., Lengyel, L. L. & Mertens, V. 1995 Pellet fuelling. Nucl. Fusion 35 (6), 657754.Google Scholar
Mora, P. 2003 Plasma expansion into a vacuum. Phys. Rev. Lett. 90 (18), 185002.Google Scholar
Parks, P. B. & Baylor, L. R. 2005 Effect of parallel flows and toroidicity on cross-field transport of pellet ablation matter in tokamak plasmas. Phys. Rev. Lett. 94 (12), 125002.Google Scholar
Parks, P. B. & Turnbull, R. J. 1978 Effect of transonic flow in the ablation cloud on the lifetime of a solid hydrogen pellet in a plasma. Phys. Fluids 21 (10), 1735.Google Scholar
Pégourié, B. 2007 Review: Pellet injection experiments and modelling. Plasma Phys. Control. Fusion 49 (8), R87R160.Google Scholar
Pégourié, B., Waller, V., Nehme, H., Garzotti, L. & Géraud, A. 2006 Homogenization of the pellet ablated material in tokamaks taking into account the $\unicode[STIX]{x1D6FB}$ B-induced drift. Nucl. Fusion 47 (1), 4456.Google Scholar
Turkin, Y., Beidler, C. D., Maaßberg, H., Murakami, S., Tribaldos, V. & Wakasa, A. 2011 Neoclassical transport simulations for stellarators. Phys. Plasmas 18 (2), 022505.Google Scholar
Wolf, R. C. et al. 2017 Major results from the first plasma campaign of the Wendelstein 7-X stellarator. Nucl. Fusion 57 (10), 102020.Google Scholar