Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:24:41.896Z Has data issue: false hasContentIssue false

Planar and non-planar nucleus-acoustic solitary waves in warm degenerate multi-nucleus plasmas

Published online by Cambridge University Press:  05 February 2021

A. A. Mamun*
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka1342, Bangladesh
J. Akter
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka1342, Bangladesh
*
Email address for correspondence: [email protected]

Abstract

A warm degenerate plasma (containing ultra-relativistically or non-relativistically warm degenerate inertia-less electron species, non-relativistically warm degenerate inertial light nucleus species and stationary heavy nucleus species) is considered. The basic features of planar and non-planar solitary structures associated with the degenerate pressure-driven nucleus-acoustic waves propagating in such a warm degenerate plasma system are investigated. The reductive perturbation method, which is valid for small- but finite-amplitude solitary waves, is used. It is found that the effects of non-planar cylindrical and spherical geometries, non- and ultra-relativistically degenerate electron species and the temperature of degenerate electron species significantly modify the basic features (i.e. speed, amplitude and width) of the solitary potential structures associated with degenerate pressure-driven nucleus-acoustic waves. The warm degenerate plasma model under consideration is applicable not only to all cold white dwarfs, but also to many hot white dwarfs, such as DQ white dwarfs, white dwarf H1504+65, white dwarf PG 0948+534, etc.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108, 546550.CrossRefGoogle Scholar
Brodin, G., Ekman, R. & Zamanian, J. 2016 Quantum kinetic theories in degenerate plasmas. Plasma Phys. Control. Fusion 59, 014043.CrossRefGoogle Scholar
Chandrasekhar, S. 1931 a The density of white dwarf stars. Phil. Mag. 11, 70.CrossRefGoogle Scholar
Chandrasekhar, S. 1931 b The maximum mass of ideal white dwarfs. Astrophys. J. 74, 8182.CrossRefGoogle Scholar
Chandrasekhar, S. 1936 The pressure in the interior of a star. NRAS 96, 644647.CrossRefGoogle Scholar
Chowdhury, N. A., Hasan, M. M., Mannan, A. & Mamun, A. A. 2018 Nucleus-acoustic envelope solitons and their modulational instability in a degenerate quantum plasma system. Vacuum 147, 3137.CrossRefGoogle Scholar
Das, P. & Karmakar, P. K. 2019 Nonlinear nucleus-acoustic waves in strongly coupled degenerate quantum plasmas. Europhys. Lett. 126, 10001.CrossRefGoogle Scholar
Dufour, P., Béland, S., Fontaine, G., Chayer, P. & Bergeron, P. 2011 Taking advantage of the COS time-tag capability: Observations of pulsating Hot DQ white dwarfs and discovery of a new one. Astrophys. J. Lett. 733, L19.CrossRefGoogle Scholar
Dufour, P., Fontaine, G., Liebert, J., Schmidt, G. D. & Behara, N. 2008 Hot DQ white dwarfs: something different. Astrophys. J. 683, 978989.CrossRefGoogle Scholar
Fowler, R. H. 1926 On dense matter. MNRAS 87, 114122.CrossRefGoogle Scholar
Horn, H. M. V. 1991 Dense astrophysical plasmas. Science 252, 384389.CrossRefGoogle Scholar
Hossain, G. M. & Mandal, S. 2019 Revisiting equation of state for white dwarfs within finite temperature quantum field theory. AxXiv: 19 252, 384389.Google Scholar
Jannat, S. & Mamun, A. A. 2018 a Nucleus-acoustic shock waves in white dwarfs. Pramana - J. Phys. 90, 51.CrossRefGoogle Scholar
Jannat, S. & Mamun, A . A. 2018 b Nucleus-acoustic solitary waves in white dwarfs. Chinese J. Phys. 56, 30463052.CrossRefGoogle Scholar
Koester, D. 2002 White dwarfs: recent developments. Astron. Astrophys. Rev. 11, 3366.CrossRefGoogle Scholar
Koester, D. & Chanmugam, G. 1990 Physics of white dwarf stars. Rep. Prog. Phys. 53, 837916.CrossRefGoogle Scholar
Koester, D., Kepler, S. O. & Irwin, A. W. 2020 New white dwarf envelope models and diffusion-Application to DQ white dwarfs. Astron. Astrophys. 635, A103.CrossRefGoogle Scholar
Mamun, A. A. 2018 Degenerate pressure driven modified nucleus-acoustic waves in degenerate plasmas. Phys. Plasmas 25, 024502.CrossRefGoogle Scholar
Mamun, A. A., Amina, M. & Schlickeiser, R. 2016 Nucleus-acoustic shock structures in a strongly coupled self-gravitating degenerate quantum plasma. Phys. Plasmas 23, 094503.CrossRefGoogle Scholar
Mamun, A. A., Amina, M. & Schlickeiser, R. 2017 Heavy nucleus-acoustic spherical solitons in self-gravitating super-dense plasmas. Phys. Plasmas 24, 042307.CrossRefGoogle Scholar
Mamun, A. A. & Shukla, P. K. 2002 Cylindrical and spherical dust ion–acoustic solitary waves. Phys. Plasmas 9, 14681470.CrossRefGoogle Scholar
Manfredi, G. 2005 How to model quantum plasmas. Fields Inst. Commun. 46, 263287.Google Scholar
Popel, S. I. & Yu, M. Y. 1995 Ion acoustic solitons in impurity-containing plasmas. Contrib. Plasma Phys. 35, 103108.CrossRefGoogle Scholar
Revans, R. W. 1933 The transmission of waves through an ionized gas. Phy. Rev. 44, 798902.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966Cooperative phenomena and shock waves in collisionless plasmas. In Review of Plasma Physics (ed. M. A. Leontovich), vol. 4, pp. 23–91. Consultants Bureau.Google Scholar
Sahu, B. & Roychoudhury, R. 2007 Cylindrical and spherical quantum ion acoustic waves. Phys. Plasmas 14, 012304.CrossRefGoogle Scholar
Salpeter, E. E. 1961 Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669682.CrossRefGoogle Scholar
Shukla, P. K. & Eliasson, B. 2011 Nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885906.CrossRefGoogle Scholar
Shukla, P. K., Mamun, A. A. & Mendis, D. A. 2011 Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate electron fluids. Phys. Rev. E 84, 026405.CrossRefGoogle Scholar
Srinivas, J., Popel, S. I. & Shukla, P. K. 1996 Electrostatic solitons in an electron-positron plasma with two distinct groups of positrons. J. Plasma Phys. 55, 209217.CrossRefGoogle Scholar
Sultana, S., Islam, S., Mamun, A. A. & Schlickeiser, R. 2018 Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system. Phys. Plasmas 25, 012113.CrossRefGoogle Scholar
Sultana, S. & Schlickeiser, R. 2018 Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons. Phys. Plasmas 25, 022110.CrossRefGoogle Scholar
Tonks, L. & Langmuir, I. 1929 Oscillations in ionized gases. Phy. Rev. 33, 195210.CrossRefGoogle Scholar
Vanderburg, A. J., Johnson, A., Rappaport, S., Bieryla, A., Irwin, J., Lewis, J. A., Kipping, D., Brown, D. R., Dufour, P., Ciardi, D. R., et al. 2015 A disintegrating minor planet transiting a white dwarf. Nature 526, 546549.CrossRefGoogle ScholarPubMed
Vavrukh, M. V. & Smerechynskyi, S. V. 2012 A finite temperature Chandrasekhar model: determining the parameters and calculation of the characteristics of degenerate dwarfs. Astron. Rep. 56, 363378.CrossRefGoogle Scholar
Washimi, H. & Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996997.CrossRefGoogle Scholar
Werner, K. & Rauch, T. 2015 Analysis of HST/COS spectra of the bare C–O stellar core H1504+65 and a high-velocity twin in the Galactic halo. Astron. Astrophys. 584, A19.CrossRefGoogle Scholar
Werner, K., Rauch, R. & Reindl, N. 2019 Spectral analysis of the extremely hot DA white dwarf PG0948+534. MNRAS 483, 52915300.CrossRefGoogle Scholar
Witze, A. 2014 Space-station science ramps up. Nature 510, 196.CrossRefGoogle ScholarPubMed
Zaman, D. M. S., Amina, M., Dip, P. R. & Mamun, A. A. 2017 Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems. Euro Phys. J. Plus 132, 457.CrossRefGoogle Scholar
Zaman, D. M. S., Amina, M., Dip, P. R. & Mamun, A. A. 2018 Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas. Chinese Phys. B 27, 040402.CrossRefGoogle Scholar