Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T22:44:02.738Z Has data issue: false hasContentIssue false

Photon equivalent charge in a two-electron temperature Fermi plasma

Published online by Cambridge University Press:  01 February 2009

L. A. RIOS
Affiliation:
Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
P. K. SHUKLA
Affiliation:
Fakultät für Physik und Astronomie, Institut für Theoretische Physik IV, Ruhr-Universität Bochum, D-44780 Bochum, Germany ([email protected])
A. SERBETO
Affiliation:
Instituto de Física, Universidade Federal Fluminense, 24210-340 Niterói, Rio de Janeiro, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The equivalent photon charge in a two-electron temperature Fermi plasma is determined through the plasma physics method. The Fermi plasma has distinct populations of hot and cold electrons that are described by a quantum hydrodynamic model which accounts for the quantum statistical pressure of the hot electrons and the quantum force acting on the two electron fluids. Relations for the coupling between the electron plasma density fluctuations and the radiation fields are derived, and the effective photon charge is then calculated.

Type
Letter to the Editor
Copyright
Copyright © Cambridge University Press 2008

References

[1]Mendonça, J. T., Silva, L. O., Bingham, R., Tsintsadze, N. L., Shukla, P. K. and Dawson, J. M. 1998 Phys. Lett. A 239, 373.CrossRefGoogle Scholar
[2]Tsintsadze, N. L., Mendonça, J. T. and Shukla, P. K. 1998 Phys. Lett. A 249, 110.CrossRefGoogle Scholar
[3]Bingham, R., Mendonça, J. T. and Dawson, J. M. 1997 Phys. Rev. Lett. 78, 247.CrossRefGoogle Scholar
[4]Mendonça, J. T., Martins, A. M. and Guerreiro, A. 2000 Phys. Rev. E 62, 2989.CrossRefGoogle Scholar
[5]Johnson, S. L., Heimann, P. A., Lindenberg, A. M., Jeschke, H. O., Garcia, M. E., Chang, Z., Lee, R. W., Rehr, J. J. and Falcone, R. W. 2003 Phys. Rev. Lett. 91, 157403.CrossRefGoogle Scholar
Johnson, S. L., Heimann, P. A., Macphee, A. G., Lindenberg, A. M., Monteiro, O. R., Chang, Z., Lee, R. W. and Falcone, R. W. 2005 Phys. Rev. Lett. 94, 057407.CrossRefGoogle Scholar
[6]Bergmann, U., Wernet, Ph., Glatzel, P., Cavalleri, M., Pettersson, L. G. M., Nilsson, A. and Cramer, S. P. 2002 Phys. Rev. B 66, 092107.CrossRefGoogle Scholar
Glenzer, S. H., Gregori, G., Rogers, F. J., Froula, D. H., Pollaine, S. W., Wallace, R. S. and Landen, O. L. 2003 Phys. Plasmas 10, 2433.CrossRefGoogle Scholar
[7]Glenzer, S. H. et al. 2007 Phys. Rev. Lett. 98, 065002.CrossRefGoogle Scholar
[8]Kirichenko, O. V. and Peschansky, V. G. 2001 Low Temp. Phys. 27, 380.CrossRefGoogle Scholar
Kornyushin, Y. and Que, W. 2002 J. Phys.: Condens. Matter 14, 10203.Google Scholar
Tilke, A. T., Simmel, F. C., Lorenz, H., Blick, R. H. and Kotthaus, J. P. 2003 Phys. Rev. B 68, 075311.CrossRefGoogle Scholar
Plumridge, J. and Phillips, C. 2007 Phys. Rev. B 76, 075326.CrossRefGoogle Scholar
[9]Adams, J. B., Ruderman, M. A. and Woo, C. 1963 Phys. Rev. 129, 1383.CrossRefGoogle Scholar
Jung, Y.-D. 2003 Phys. Plasmas 10, 502.CrossRefGoogle Scholar
Shukla, P. K. and Stenflo, L. 2006 Phys. Lett. A 355, 378.CrossRefGoogle Scholar
Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025001.CrossRefGoogle Scholar
[10]Pines, D. 1961 J. Nucl. Energy C: Plasma Phys. 2, 5.CrossRefGoogle Scholar
[11]Mandredi, G. 2005 Fields Inst. Commun. Ser. 46, 263.Google Scholar
[12]Gardner, C. L. and Ringhofer, C. 1996 Phys. Rev. E 53, 157.Google Scholar
[13]Manfredi, G. and Haas, F. 2001 Phys. Rev. B 64, 075316.CrossRefGoogle Scholar
[14]Montgomery, D. S., Focia, R. J., Rose, H. A., Russell, D. A., Cobble, J. A., Fernández, J. C. and Johnson, R. P. 2001 Phys. Rev. Lett. 87, 155001.CrossRefGoogle Scholar
Batani, D. et al. 2002 Phys. Rev. E 65, 066409.Google Scholar
Ferrante, G., Zarcone, M., Uryupina, D. S. and Uryupin, S. A. 2003 Phys. Plasmas 10, 3344.CrossRefGoogle Scholar
[15]Tabak, M., Hammer, J., Glinsky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. 1994 Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
[16]Lund, E. J., Labelle, J. and Treumann, R. A. 1994 J. Geophys. Res. 99 23,651.CrossRefGoogle Scholar
Pottelette, R., Ergun, R. E., Treumann, R. A., Berthomier, M., Carlson, C. W., McFadden, J. P. and Roth, I. 1999 Geophys. Res. Lett. 26, 2629.CrossRefGoogle Scholar
[17]Bezzerides, B., Forslund, D. W. and Lindman, E. L. 1978 Phys. Fluids 21, 2179.CrossRefGoogle Scholar
Gary, S. P. and Tokar, R. L. 1985 Phys. Fluids 28, 2439.CrossRefGoogle Scholar
[18]Yu, M. Y. and Shukla, P. K. 1983 J. Plasma Phys. 29, 409.CrossRefGoogle Scholar
[19]Riggs, P. J. 2001 Erkenn. 68, 21.CrossRefGoogle Scholar
[20]Yu, M. Y., Shukla, P. K. and Spatschek, K. H. 1974 Zh. Naturforsch. A 29, 1736.CrossRefGoogle Scholar
Shukla, P. K., Yu, M. Y. and Spatschek, K. H. 1975 Phys. Fluids 18, 265.CrossRefGoogle Scholar
[21]Shukla, P. K. and Stenflo, L. 1984 Phys. Rev. A 30, 2110.CrossRefGoogle Scholar
Murtaza, G. and Shukla, P. K. 1984 J. Plasma Phys. 31, 423.CrossRefGoogle Scholar