Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-20T09:15:28.218Z Has data issue: false hasContentIssue false

Overview of laser-driven generation of electron–positron beams

Published online by Cambridge University Press:  19 May 2015

G. Sarri*
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, BT7 1NN, Belfast, UK
M. E. Dieckmann
Affiliation:
Department of Science and Technology (ITN), Linkoping University, 601 74 Norrköping, Sweden
I. Kourakis
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, BT7 1NN, Belfast, UK
A. Di Piazza
Affiliation:
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
B. Reville
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, BT7 1NN, Belfast, UK
C. H. Keitel
Affiliation:
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
M. Zepf
Affiliation:
Centre for Plasma Physics, School of Mathematics and Physics, Queen's University of Belfast, BT7 1NN, Belfast, UK Helmholtz Institute Jena, Frobelsteig 3, 07743 Jena, Germany
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron–positron (e–p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e–p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

References

REFERENCES

Arons, J. and Scharlemann, E. T. 1979 Astrophys. J. 231, 854.Google Scholar
Baier, V. N. and Katkov, V. M. 2008 Pisma Zh. Eksp. Teor. Fiz. 88 (2), 88.Google Scholar
Battistoni, G. et al. 2007 AIP Conf. Proc. 896, 31.Google Scholar
Begelman, M. C., Blandford, R. D. and Rees, M. D. 1984 Rev. Mod. Phys. 56, 255.Google Scholar
Beresteskii, V. B., Lifshitz, E. M. and Pitaevskii, L. P. 2008 Quantum Electrodynamics. Oxford: Butterworth-Heinemann.Google Scholar
Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Phys. Rev. A 46, 6608.Google Scholar
Blandford, R. D. and Znajek, R. L. 1977 MNRAS 179, 433.Google Scholar
Blue, B. E. et al. 2003 Phys. Rev. Lett. 90, 214801.Google Scholar
Brainerd, J. J. 2000 Astrophys. J. 538, 628.Google Scholar
Bret, A., Dieckmann, M. E. and Deutsch, C. 2006 Phys. Plasmas 13, 082109.Google Scholar
Bret, A., Gremillet, L., Benisti, D. and Lefebvre, E. 2008 Phys. Rev. Lett. 100, 205008.Google Scholar
Bret, A., Gremillet, L. and Dieckmann, M. E. 2010 Phys. Plasmas 17, 120501.Google Scholar
Bret, A., Stockem, A., Narayan, R. and Silva, L. O. 2014 Phys. Plasmas 21, 072301.Google Scholar
Bret, A. et al. 2013 Phys. Plasmas 20, 042102.Google Scholar
Burns, M. L. 1983 Positron-Electron Pairs in Astrophysics (ed. Burns, M. L., Harding, A. K. and Ramaty, R.). New York: American Institute of Physics, pp. 281.Google Scholar
Cattaert, T., Kourakis, I. and Shukla, P. K. 2005 Phys. Plasmas 12 (1), 012319.Google Scholar
Chen, H., Wilks, S., Bonlie, J., Liang, E., Myatt, J., Price, D., Meyerhofer, D. and Beiersdorfer, P. 2009a Phys. Rev. Lett. 102, 105001 Google Scholar
Chen, H. et al. 2009b Phys. Plasmas 16, 122702.Google Scholar
Chen, H. et al. 2010 Phys. Rev. Lett. 105, 015003.Google Scholar
Chen, H. et al. 2014 Phys. Plasmas 21, 040703.Google Scholar
Clayton, C. E. et al. 2010 Phys. Rev. Lett. 105, 105003.Google Scholar
Connor, J. W. and Taylor, J. B. 1977 Nuclear Fusion 17, 1047.Google Scholar
Cross, J. E., Reville, B. and Gregori, G. 2014 ApJ, 795, 59.Google Scholar
Dawson, J. M. 1983 Rev. Mod. Phys. 55, 403.Google Scholar
Dieckmann, M. E., Frederiksen, J. T., Bret, A. and Shukla, P. K. 2006 Phys. Plasmas 13, 112110.Google Scholar
Dieckmann, M. E., Shukla, P. K. and Stenflo, L. 2009 Plasma Phys. Control. Fusion 51, 065015.Google Scholar
Di Piazza, A., Müller, C., Hatsagortsyan, K. Z. and Keitel, C. H. 2012 Rev. Mod. Phys. 84, 1177.Google Scholar
Esarey, E., Schroeder, C. B. and Leemans, W. P. 2009 Rev. Mod. Phys. 81, 1229.Google Scholar
Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. and Shukla, P. K. 2006a J. Phys. A: Math. Gen. 39, 13817.Google Scholar
Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006b Phys. Plasmas 13, 122310/1–9.Google Scholar
Fiore, M., Silva, L. O., Ren, C., Tzoufras, M. A. and Mori, W. B. 2006 Mon. Not. R. Astron. Soc. 372, 1851.Google Scholar
Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Delfin, C., Wahlstrom, C.-G. and Habs, D. 2000 Appl. Phys. Lett. 77, 2662.Google Scholar
Gahn, C., Tsakiris, G. D., Pretzler, G., Witte, K. J., Thirolf, P., Habs, D., Delfin, C. and Wahlstrom, C.-G. 2002 Phys. Plasmas 9, 987.Google Scholar
Gibbon, P., Beg, F. N., Clark, E. L., Evans, R. G. and Zepf, M. 2004 Phys. Plasmas 11, 4032.Google Scholar
Gibbons, G. W., Hawking, S. W. and Siklos, S. 1983 The Very Early Universe. Cambridge: Cambridge University Press.Google Scholar
Ginzburg, V. L. 1971 Sov. Phys. Usp. 14, 83 Google Scholar
Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.Google Scholar
Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.Google Scholar
Hasegawa, H. and Ohsawa, Y. J. 2004 Phys. Soc. Japan 73 (7), 1764.Google Scholar
Hatakeyama, R. and Oohara, W. 2005 Phys. Scr. 116, 101.Google Scholar
Heitler, W. 1954 The Quantum Theory of Radiation. Oxford: Clarendon Press.Google Scholar
Helander, P. and Ward, D. J. 2003 Phys. Rev. Lett. 90, 135004.Google Scholar
Hooker, C. J. et al. 2006 J. Physique IV 133, 673.Google Scholar
Hoshino, M., Arons, J., Gallant, Y. A. and Langdon, A. B. 1992 Astrophys. J. 390, 454.Google Scholar
Iwamoto, N. 1993 Phys. Rev. E 47, 604.Google Scholar
Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2004 Astrophys. J. 616, 1065.Google Scholar
Jaroschek, C. H., Lesch, H. and Treumann, R. A. 2005 Astrophys. J. 618, 822.Google Scholar
Jehan, N., Salahuddin, M., Saleem, H. and Mirza, A. M. 2008 Phys. Plasmas 15, 092301.Google Scholar
Kazimura, Y., Sakai, J. I., Neubert, T. and Bulanov, S. V. 1998 Astrophys. J. 498, L183.Google Scholar
Keenan, B. D. and Medvedev, M. V. 2013 Phys. Rev. E 88, 013103.Google Scholar
Kennel, C. F. and Coroniti, F. V. 1984 Astrophys. J. 283, 710.Google Scholar
Kirk, J. G., Lyubarsky, Y. and Petri, J. 2009 The Theory of Pulsar Winds and Nebulae, Astrophysics and Space Science Library, 357, 421450.Google Scholar
Kirk, J. G. and Reville, B. 2010 Astrophys. J. 710, L16.Google Scholar
Koch, H. W. and Motz, J. 1959 Rev. Mod. Phys. 31, 920.Google Scholar
Komissarov, S. S. and Barkov, M. V. 2009 MNRAS 397, 1153.Google Scholar
Kourakis, I., Esfandyari-Kalejahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Phys. Plasmas 13 (5), 052117.Google Scholar
Kourakis, I., Moslem, W. M., Abdelsalam, U. M., Sabry, R. and Shukla, P. K. 2009 Plasma Fusion Res. 4, 018.Google Scholar
Kourakis, I. and Saini, N. S. 2010 J. Plasma Phys. 76 (3–4), 607.Google Scholar
Kourakis, I. and Shukla, P. K. 2005 Nonlinear Process. Geophys. 12, 407.Google Scholar
Kourakis, I., Verheest, F. and Cramer, N. 2007 Phys. Plasmas 14 (2), 022306.Google Scholar
Krall, J. et al. 1993 Phys. Rev. E 48, 2157.Google Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics, New York: McGraw-Hill, pp. 9.Google Scholar
Kruer, W. L. and Estabrook, K. 1985 Phys. Fluids 28, 430.Google Scholar
Langdon., A. B. 1980 Phys. Rev. Lett. 44, 575.Google Scholar
Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 J. Plasma Phys. 74, 519.Google Scholar
Leemans, W. P. et al. 2006 Nature Phys. 2, 696.Google Scholar
Leemans, W. P. et al. 2014 Phys. Rev. Lett. 113, 245002.Google Scholar
Lemoine, M. and Pelletier, G. 2011 Mon. Not. R. Astron. Soc. 417, 1148.Google Scholar
Lemoine, M., Pelletier, G., Gremillet, L. and Plotnikov, I. 2014 Mon. Not. R. Astron. Soc. 440, 1365.Google Scholar
Levinson, A. et al. 2005 Astrophys. J. 631, 456.Google Scholar
Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887Google Scholar
Lobet, M., Ruyer, C., Debayle, A., d'Humières, E., Grech, M., Lemoine, M. and Gremillet, L. 2014 Phys. Rev. Lett., submitted.Google Scholar
Macchi, A., Borghesi, M. and Passoni, M. 2013 Rev. Mod. Phys. 85, 751.Google Scholar
Manchester, R. N. and Taylor, J. H. 1977 Pulsars. San Francisco: Freeman.Google Scholar
Medvedev, M. V. and Loeb, A. 1999 Astrophys. J. 526, 697.Google Scholar
Meszaros, P. and Rees, M. J. 1992 MNRAS 257, 29P.Google Scholar
Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.Google Scholar
Michel, F. C. 1991 Theory of neutron Star Magnetospheres. Chicago: University of Chicago Press.Google Scholar
Pulsars: Problems and Progress (Astrophysical Society of the Pacific Conference Series 105), (ed. Johnston, S., Walker, M. A. and Bailes, M.) San Francisco: ASP, 1996.Google Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer-Verlag, pp. 202.Google Scholar
Milosavljevic, M. and Nakar, E. 2006 Astrophys. J. 641, 978.Google Scholar
Milosavljevic, M., Nakar, E. and Spitkovsky, A. 2006 Astrophys. J. 637, 765.Google Scholar
Muggli, P. et al. 2013 ArXiv:1306.4380v1.Google Scholar
Nagata, K., Hoshino, M., Jaroschek, C. H. and Takabe, H. 2008 Astrophys. J. 680, 627.Google Scholar
Ng, J. S. T. et al. 2001 Phys. Rev. Lett. 87, 244801 Google Scholar
Nishikawa, K. I., Hardee, P., Richardson, G., Preece, R., Sol, H. and Fishman, G. J. 2005 Astrophys. J. 622, 927.Google Scholar
Nishikawa, K. I. et al. 2009 Astrophys. J. 698, L10.Google Scholar
Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003.Google Scholar
Oohara, W. and Hatakeyama, R. 2003 Phys. Rev. Lett. 91, 205005.Google Scholar
Piran, T. 2004 Rev. Mod. Phys. 76, 1143.Google Scholar
Polomarov, O., Kaganovich, I. and Shvets, G. 2008 Phys. Rev. Lett. 101, 175001.Google Scholar
Potier, J. P. and Rinolfi, L. 1998 Proc. 6th European Particle Accelerator Conference, Stockholm, Sweden, pp. 859–861.Google Scholar
Pukhov, A., Sheng, Z.-M. and Meyer-ter-Vehn, J. 1999 Phys. Plasmas 6, 2847.Google Scholar
Reville, B. and Kirk, J. G. 2010 Astrophys. J. 715, 186.Google Scholar
Rossi, B. 1952 High-Energy Particles. New York: Prentice-Hall.Google Scholar
Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.Google Scholar
Ruderman, M. A. and Sutherland, P. G. 1975 Astrophys. J. 196, 51.Google Scholar
Ryutov, D. et al. 1999 Astrophys. J. 518, 821.Google Scholar
Ryutov, D. et al. 2001 Phys. Plasmas 8, 1804.Google Scholar
Ryutov, D. et al. 2012 Plasma Phys. Control. Fusion 54, 105021.Google Scholar
Sadowski, A. et al. 2014 MNRAS 439, 503.Google Scholar
Sakai, J. and Kawata, T. J. 1980 Phys. Soc. Japan 49, 753.Google Scholar
Sakai, J., Nakayama, T., Kazimura, Y. and Bulanov, S. 2000 J. Phys. Soc. Japan 69, 2503.Google Scholar
Salahuddin, M., Saleem, H. and Saddiq, M. 2002 Phys. Rev. E 66, 036407.Google Scholar
Saleem, H., Vranjes, J. and Poedts, S. 2006 Phys. Lett. A 350, 375.Google Scholar
Sarri, G. et al. 2013a Plasma Phys. Control. Fusion 55, 124017.Google Scholar
Sarri, G. et al. 2013b Phys. Rev. Lett. 110, 255002.Google Scholar
Sarri, G. et al. 2015 Nat. Comm 6, 6747.Google Scholar
Schamel, H. 2008 J. Plasma Phys. 74, 725.Google Scholar
Schamel, H. and Luque, A. 2005 New J. Phys. 7, 69.Google Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. and Medvedev, M. V. 2003 Astrophys. J. 596, L121.Google Scholar
Sironi, L. and Spitkovsky, A. 2009 Astrophys. J. 698, 1523.Google Scholar
Sironi, L. and Spitkovsky, A. 2011 Astrophys. J. 741, 39.Google Scholar
Sprangle, P. et al. 1987 IEEE Trans. Plasma. Sci. PS–15, 145.Google Scholar
Stewart, G. A. and Laing, E. W. 1992 J. Plasma Phys. 47, 295.Google Scholar
Stix, Th. 1992 Waves in Plasmas, New York: American Institute of Physics, pp. 6 and 26.Google Scholar
Sturrock, P. A. 1971 Astrophys. J. 164, 529.Google Scholar
Surko, C. M., Levelhal, M., Crane, W. S., Passne, A. and Wysocki, F. 1986 Rev. Sci. Instrum 57, 1862.Google Scholar
Surko, C.M. and Murphy, T. 1990 Phys. Fluid B 2, 1372.Google Scholar
Swanson, D. G. 2003 Plasma Waves, Bristol, UK: Institute of Physics, pp. 19.Google Scholar
Timokhin, A. N. and Arons, J. 2013 MNRAS 429, 20.Google Scholar
Tsai, Y. 1974 Rev. Mod. Phys. 46 815.Google Scholar
Tsytovich, V. and Wharton, C. B. 1978 Commun. Plasma Phys. Control. Fusion 4, 91.Google Scholar
Tzoufras, M., Ren, C., Tsung, F. S., Tonge, J. W., Mori, W. B., Fiore, M., Fonseca, R. A., and Silva, L. O. 2006 Phys. Rev. Lett. 96, 105002.Google Scholar
Urry, C. M. and Padovani, P. 1995 Publ. Astron. Soc. Pac. 107, 715.Google Scholar
Verheest, F. 1996 Phys. Lett. A 213, 177.Google Scholar
Verheest, F. 2005 Nonlinear Proc. Geophys. 12, 569.Google Scholar
Verheest, F. 2006 Phys. Plasmas 13, 082301.Google Scholar
Verheest, F. and Cattaert, T. 2004 Phys. Plasmas 11, 3078.Google Scholar
Verheest, F., Cattaert, T., Lakhina, G. S. and Singh, S. V. 2004 J. Plasma Phys. 70 (2), 237.Google Scholar
Vieira, J., Fang, Y., Mori, W. B., Silva, L. O. and Muggli, P. 2012 Phys. Plasmas 19, 063105.Google Scholar
Vranjes, J. and Poedts, S. 2005 Plasma Sources Sci. Technol. 14, 485.Google Scholar
Wang, X. et al. 2013 Nature Commun. 4, 1.Google Scholar
Waxer, L. J. et al. 2005 Opt. Photon. News 16, 30.Google Scholar
Wilks, S. C. and Kruer., L. 1997 IEEE J. Quantum Electron. 33, 1954.Google Scholar
Williams, G. and Kourakis, I. 2013 Phys. Plasmas 20, 122311.Google Scholar
Yan, Y. et al. 2013a Phys. Plasmas 20, 103106.Google Scholar
Yan, Y. et al. 2013b Phys. Plasmas 20, 103114.Google Scholar
Yanovsky, V. et al. 2008 Opt. Express 16, 2109.Google Scholar
Zank, G. P. and Greaves, R. G. 1995 Phys. Rev. E 51, 6079.Google Scholar
Zhang, S. N. 2013 Frontiers Phys. 8, 630.Google Scholar
Zhao, J., Nishikawa, K. and Sakai, J. I. 1994 Phys. Plasmas 1, 103.Google Scholar
Zhao, J., Sakai, J. I. and Nishikawa, K. 1996 Phys. Plasmas 3, 844.Google Scholar