Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T07:29:10.904Z Has data issue: false hasContentIssue false

Optimization of finite-build stellarator coils

Published online by Cambridge University Press:  20 August 2020

Luquant Singh*
Affiliation:
HSX Laboratory, University of Wisconsin, Madison, WI53706, USA
T. G. Kruger
Affiliation:
HSX Laboratory, University of Wisconsin, Madison, WI53706, USA
A. Bader
Affiliation:
HSX Laboratory, University of Wisconsin, Madison, WI53706, USA
C. Zhu
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ08540, USA
S. R. Hudson
Affiliation:
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ08540, USA
D. T. Anderson
Affiliation:
HSX Laboratory, University of Wisconsin, Madison, WI53706, USA
*
Email address for correspondence: [email protected]

Abstract

Finding coil sets with desirable physics and engineering properties is a crucial step in the design of modern stellarator devices. Existing stellarator coil optimization codes ultimately produce zero-thickness filament coils. However, stellarator coils have finite depth and thickness, which can make the single-filament model a poor approximation, particularly when coil build dimensions are relatively large compared to the coil–plasma distance. In this paper, we present a new method for designing coils with finite builds and present a mechanism to optimize the orientation of the winding pack. We approximate finite-build coils with a multi-filament model. A numerical implementation has been developed, and applications to the Helically Symmetric eXperiment stellarator and a new UW-Madison quasihelically symmetric configuration are shown.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, F. S. B., Almagri, A. F., Anderson, D. T., Matthews, P. G., Talmadge, J. N. & Shohet, J. L. 1995 The helically symmetric experiment, (HSX) goals, design and status. Fusion Technol. 27 (3T), 273277.CrossRefGoogle Scholar
Bader, A., Drevlak, M., Anderson, D. T., Faber, B. J., Hegna, C. C., Likin, K. M., Schmitt, J. C. & Talmadge, J. N. 2019 Stellarator equilibria with reactor relevant energetic particle losses. J. Plasma Phys. 85 (5).CrossRefGoogle Scholar
Drevlak, M. 1998 Automated optimization of stellarator coils. Fusion Technol. 33 (2), 106117.CrossRefGoogle Scholar
Drevlak, M., Beidler, C. D., Geiger, J., Helander, P. & Turkin, Y. 2018 Optimisation of stellarator equilibria with rose. Nucl. Fusion 59 (1), 016010.CrossRefGoogle Scholar
Drevlak, M., Brochard, F., Helander, P., Kisslinger, J., Mikhailov, M., Nührenberg, C., Nührenberg, J. & Turkin, Y. 2013 Estell: a quasi-toroidally symmetric stellarator. Contrib. Plasma Phys. 53 (6), 459468.CrossRefGoogle Scholar
Grieger, G. et al. 1992 Physics optimization of stellarators. Phys. Fluids B 4 (7), 20812091.CrossRefGoogle Scholar
Henneberg, S. A., Drevlak, M., Nührenberg, C., Beidler, C. D., Turkin, Y., Loizu, J. & Helander, P. 2019 Properties of a new quasi-axisymmetric configuration. Nucl. Fusion 59 (2), 026014.CrossRefGoogle Scholar
Ku, L. P., Garabedian, P. R., Lyon, J., Turnbull, A., Grossman, A., Mau, T. K., Zarnstorff, M. & ARIES Team 2008 Physics design for aries-cs. Fusion Sci. Technol. 54 (3), 673693.CrossRefGoogle Scholar
Landreman, M. 2017 An improved current potential method for fast computation of stellarator coil shapes. Nucl. Fusion 57 (4), 046003.CrossRefGoogle Scholar
Merkel, P. 1987 Solution of stellarator boundary value problems with external currents. Nucl. Fusion 27 (5), 867.CrossRefGoogle Scholar
Neilson, G. H., Gruber, C. O., Harris, J. H., Rej, D. J., Simmons, R. T. & Strykowsky, R. L. 2010 Lessons learned in risk management on ncsx. IEEE Trans. Plasma Sci. 38 (3), 320327.CrossRefGoogle Scholar
Nührenberg, J. & Zille, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129 (2), 113117.CrossRefGoogle Scholar
Paul, E. J., Landreman, M., Bader, A. & Dorland, W. 2018 An adjoint method for gradient-based optimization of stellarator coil shapes. Nucl. Fusion 58 (7), 076015.CrossRefGoogle Scholar
Riße, K., for the W7-X team. 2009 Experiences from design and production of wendelstein 7-X magnets. Fusion Engng Des. 84 (7–11), 16191622.CrossRefGoogle Scholar
Sapper, J. & Renner, H. 1990 Stellarator wendelstein vii-as: physics and engineering design. Fusion Technol. 17 (1), 6275.CrossRefGoogle Scholar
Strickler, D. J., Berry, L. A. & Hirshman, S. P. 2002 Designing coils for compact stellarators. Fusion Sci. Technol. 41 (2), 107115.CrossRefGoogle Scholar
Zarnstorff, M. C., Berry, L. A., Brooks, A., Fredrickson, E., Fu, G.-Y., Hirshman, S., Hudson, S., Ku, L.-P., Lazarus, E., Mikkelsen, D., et al. 2001 Physics of the compact advanced stellarator NCSX. Plasma Phys. Control. Fusion 43 (12A), A237.CrossRefGoogle Scholar
Zhu, C., Hudson, S. R., Song, Y. & Wan, Y. 2017 New method to design stellarator coils without the winding surface. Nucl. Fusion 58 (1), 016008.CrossRefGoogle Scholar
Zhu, C., Hudson, S. R., Song, Y. & Wan, Y. 2018 Designing stellarator coils by a modified Newton method using focus. Plasma Phys. Control. Fusion 60 (6), 065008.CrossRefGoogle Scholar