Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T13:09:24.689Z Has data issue: false hasContentIssue false

On the formation and properties of fluid shocks and collisionless shock waves in astrophysical plasmas

Published online by Cambridge University Press:  18 June 2018

Antoine Bret*
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real, Spain
Asaf Pe’er
Affiliation:
Physics Department, University College Cork, Cork, Ireland
*
Email address for correspondence: [email protected]

Abstract

When two plasmas collide, their interaction can be mediated by collisionless plasma instabilities or binary collisions between particles of each shell. By comparing the maximum growth rate of the collisionless instabilities with the collision frequency between particles of the shells, we determine the critical density separating the collisionless formation from the collisional formation of the resulting shock waves. This critical density is also the density beyond which the shock downstream is field free, as plasma instabilities do not have time to develop electromagnetic patterns. We further determine the conditions on the shells initial density and velocity for the downstream to be collisional. If these quantities fulfil the determined conditions, the collisionality of the downstream also prevents the shock from accelerating particles or generating strong magnetic fields. We compare the speed of sound with the relative speed of collision between the two shells, thus determining the portion of the parameter space where strong shock formation is possible for both classical and degenerate plasmas. Finally, we discuss the observational consequences in several astrophysical settings.

Type
Research Article
Copyright
© Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschwanden, M. J. 2002 Particle acceleration and kinematics in solar flares – A synthesis of recent observations and theoretical concepts (invited review). Space Science Rev. 101, 1227.Google Scholar
Ashcroft, N. W. & Mermin, N. D. 1976 Solid State Physics. Holt, Rinehart and Winston.Google Scholar
Bale, S. D., Mozer, F. S. & Horbury, T. S. 2003 Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett. 91, 265004.Google Scholar
Bamba, A., Yamazaki, R., Ueno, M. & Koyama, K. 2003 Small-scale structure of the SN 1006 shock with chandra observations. Nature 589, 827837.Google Scholar
Begelman, M. C., Blandford, R. D. & Rees, M. J. 1984 Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255351.Google Scholar
Bell, A. R. 1978 The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147156.CrossRefGoogle Scholar
Beloborodov, A. M. 2017 Sub-photospheric shocks in relativistic explosions. Nature 838, 125.Google Scholar
Blandford, R. & Eichler, D. 1987 Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep. 154, 1.Google Scholar
Blandford, R. D. & Ostriker, J. P. 1978 Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29.CrossRefGoogle Scholar
Bludman, S. A., Watson, K. M. & Rosenbluth, M. N. 1960 Statistical mechanics of relativistic streams. ii. Phys. Fluids 3, 747.CrossRefGoogle Scholar
Bond, D., Wheatley, V., Samtaney, R. & Pullin, D. I. 2017 Richtmyer-meshkov instability of a thermal interface in a two-fluid plasma. J. Fluid Mech. 833, 332363.Google Scholar
Bond, J. R., Arnett, W. D. & Carr, B. J. 1984 The evolution and fate of very massive objects. Nature 280, 825847.Google Scholar
Bret, A., Gremillet, L. & Bénisti, D. 2010a Exact relativistic kinetic theory of the full unstable spectrum of an electron-beam plasma system with maxwell-jüttner distribution functions. Phys. Rev. E 81, 036402.Google Scholar
Bret, A., Gremillet, L. & Dieckmann, M. E. 2010b Multidimensional electron beam-plasma instabilities in the relativistic regime. Phys. Plasmas 17, 120501.CrossRefGoogle Scholar
Bret, A., Stockem, A., Fiúza, F., Ruyer, C., Gremillet, L., Narayan, R. & Silva, L. O. 2013 Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities. Phys. Plasmas 20, 042102.Google Scholar
Bret, A., Stockem, A., Narayan, R. & Silva, L. O. 2014 Collisionless weibel shocks: Full formation mechanism and timing. Phys. Plasmas 21 (7), 072301.Google Scholar
Budnik, R., Katz, B., Sagiv, A. & Waxman, E. 2010 Relativistic radiation mediated shocks. Nature 725, 6390.Google Scholar
Califano, F., Prandi, R., Pegoraro, F. & Bulanov, S. V. 1998 Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma. Phys. Rev. E 58, 7837.Google Scholar
Chandrasekhar, S. 1931 The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81.Google Scholar
Fender, R. 2006 Jets from X-ray binaries. In Compact Stellar X-ray Sources (ed. Lewin, W. & Van der Klis, M.), Cambridge Astrophysics, pp. 381420. Cambridge University Press.Google Scholar
Fender, R. 2016 Disc-jet-wind coupling in black hole binaries, and other stories. Astron. Nachr. 337, 381.CrossRefGoogle Scholar
Fortney, J. J. & Nettelmann, N. 2010 The interior structure, composition, and evolution of giant planets. Space Science Rev. 152, 423447.Google Scholar
Gal-Yam, A., Mazzali, P., Ofek, E. O., Nugent, P. E., Kulkarni, S. R., Kasliwal, M. M., Quimby, R. M., Filippenko, A. V., Cenko, S. B., Chornock, R. et al. 2009 Supernova 2007bi as a pair-instability explosion. Astrophys. J. 462, 624627.Google Scholar
Heger, A. & Woosley, S. E. 2002 The nucleosynthetic signature of population III. Nature 567, 532543.Google Scholar
Huntington, C. M., Fiuza, F., Ross, J. S., Zylstra, A. B., Drake, R. P., Froula, D. H., Gregori, G., Kugland, N. L., Kuranz, C. C., Levy, M. C. et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11, 173176.Google Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. W. A. Benjamin, Inc. Google Scholar
Ichimaru, S. 1982 Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 10171059.CrossRefGoogle Scholar
Jackson, J. D. 1998 Classical Electrodynamics. Wiley.Google Scholar
Jeffrey, N. L. S., Fletcher, L. & Labrosse, N. 2017 Non-Gaussian velocity distributions in solar flares from extreme ultraviolet lines: A possible diagnostic of ion acceleration. Nature 836, 35.Google Scholar
Landau, L. D. & Lifshitz, E. M. 2013a Course of Theoretical Physics, Statistical Physics. Elsevier.Google Scholar
Landau, L. D. & Lifshitz, E. M. 2013b Fluid Mechanics. Elsevier.Google Scholar
Lattimer, J. M. & Prakash, M. 2007 Neutron star observations: Prognosis for equation of state constraints. Phys. Rep. 442, 109165.Google Scholar
Longair, M. S. 2011 High Energy Astrophysics. Cambridge University Press.Google Scholar
Lundman, C., Beloborodov, A. & Vurm, I. 2018 Radiation-mediated shocks in gamma-ray bursts: Pair creation. Astrophys. J. 858, 7.Google Scholar
Marcowith, A., Bret, A., Bykov, A., Dieckmann, M. E., Drury, L. O. C., Lembège, B., Lemoine, M., Morlino, G., Murphy, G., Pelletier, G. et al. 2016 The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901.Google Scholar
Medvedev, M. V., Fiore, M., Fonseca, R. A., Silva, L. O. & Mori, W. B. 2005 Long-time evolution of magnetic fields in relativistic gamma-ray burst shocks. Astrophys. J. 618, L75.Google Scholar
Mészáros, P. 2006 Gamma-ray bursts. Rep. Prog. Phys. 69, 22592321.Google Scholar
Milosavljevic, M. & Nakar, E. 2006 Weibel filament decay and thermalization in collisionless shocks and gamma-ray burst afterglows. Astrophys. J. 641, 978983.CrossRefGoogle Scholar
Novo, A. S., Bret, A., Fonseca, R. A. & Silva, L. O. 2015 Shock formation in electron-ion plasmas: Mechanism and timing. Astrophys. J. Lett. 803 (2), L29.CrossRefGoogle Scholar
Pe’er, A. 2015 Physics of gamma-ray bursts prompt emission. Adv. Astron. 2015, 907321.Google Scholar
Pe’er, A. & Waxman, E. 2004 Prompt gamma-ray burst spectra: Detailed calculations and the effect of pair production. Nature 613, 448459.Google Scholar
Petschek, H. E. 1958 Aerodynamic dissipation. Rev. Mod. Phys. 30, 966974.Google Scholar
Rees, M. J. & Meszaros, P. 1994 Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. Lett. 430, L93L96.Google Scholar
Rybicki, G. B. & Lightman, A. P. 1979 Radiative Processes in Astrophysics. Wiley.Google Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23.Google Scholar
Sagdeev, R. Z. & Kennel, C. F. 1991 Collisionless shock waves. Sci. Am. 264 (4), 106115.Google Scholar
Schwartz, S. J., Henley, E., Mitchell, J. & Krasnoselskikh, V. 2011 Electron temperature gradient scale at collisionless shocks. Phys. Rev. Lett. 107, 215002.Google Scholar
Shaisultanov, R., Lyubarsky, Y. & Eichler, D. 2012 Stream instabilities in relativistically hot plasma. Astrophys. J. 744, 182.Google Scholar
Shapiro, S. L. & Teukolsky, S. A. 1983 Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, A Wiley-interscience Publication. Wiley.Google Scholar
Silva, L. O., Fonseca, R. A., Tonge, J. W., Dawson, J. M., Mori, W. B. & Medvedev, M. V. 2003 Interpenetrating plasma shells: Near-equipartition magnetic field generation and nonthermal particle acceleration. Astrophys. J. Lett. 596, L121L124.Google Scholar
Sironi, L. & Spitkovsky, A. 2011 Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Nature 726, 75–+.Google Scholar
Smith, N., Li, W., Foley, R. J., Wheeler, J. C., Pooley, D., Chornock, R., Filippenko, A. V., Silverman, J. M., Quimby, R., Bloom, J. S. et al. 2007 SN 2006gy: Discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like $\unicode[STIX]{x1D702}$ carinae. Nature 666, 11161128.Google Scholar
Spitkovsky, A. 2008 Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. Lett. 682, L5L8.Google Scholar
Urry, C. M. & Padovani, P. 1995 Unified schemes for radio-loud active galactic nuclei. Publ. Astr. Soc. Pacific 107, 803845.Google Scholar
Watson, K. M., Bludman, S. A. & Rosenbluth, M. N. 1960 Statistical mechanics of relativistic streams. i. Phys. Fluids 3, 741.Google Scholar
Zel’dovich, Y. B. & Raizer, Y. P. 2002 Physics of Shock Waves and High-temperature Hydrodynamic Phenomena. Dover Publications.Google Scholar
Zhang, W.-S., Cai, H.-B., Shan, L.-Q., Zhang, H.-S., Gu, Y.-Q. & Zhu, S.-P. 2017 Anomalous neutron yield in indirect-drive inertial-confinement-fusion due to the formation of collisionless shocks in the corona. Nucl. Fusion 57 (6), 066012.Google Scholar