Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T04:25:35.140Z Has data issue: false hasContentIssue false

On the existence and stability of trapped Langmuir modes in a double layer

Published online by Cambridge University Press:  13 March 2009

Christer Wahlberg
Affiliation:
Department of Theoretical Electrotechnics, Institute of Technology, Uppsala Univeristy, Sweden

Abstract

The stability problem of the double layer (electrostatic shock) is investigated using a simple model of the plasma. It is shown that local Penrose-stability in general is insufficient for global stability, owing to the existence of linerly unstable trapped Langmuir modes in the density cavity. An additional requirement for stability is that the thickness of the layer must be smaller than a critical value, which in the case of a strong layer (eΔπ/κTe ≫ 1). and for the particular model being used, is of the order (eΔπ/κTe)½ λD. Various qualitative features of the instability mechanism are discussed in terms of normal mode coupling, and quantitative results, such as mode frequencies, growth rates etc., are obtained by means of a conventional perturbation approach, which, in addition to the results expected from coupled mode theory, also shows the existence of two purely decaying modes, appearing for a sufficiently thin, stable layer. The double layer formation process is briefly commented on, and some distinguishing features of the instability in this regard are pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, A. 1968 Handbook of Mathematical Functions. Dover.Google Scholar
Alfvén, H. 1978 Astrophys. Space Sci. 54, 279.CrossRefGoogle Scholar
Bernstein, I. B., Greene, J. M. & Kruskal, M. D. 1957 Phys. Rev. 108, 546.CrossRefGoogle Scholar
Bertrand, P. & Feix, M. R. 1968 Phys. Lett. 28 A, 68.Google Scholar
Biskamp, D. 1969 J. Plasma Phys. 3, 411.Google Scholar
Biskamp, D. & Chodura, R. 1973 Phys. Fluids, 16, 888.Google Scholar
Block, L. P. 1972 Cosmic Electrodyn. 3, 349.Google Scholar
Block, L. P. 1978 Astrophys. Space Sci. 55, 59.CrossRefGoogle Scholar
Carlqvist, P. 1969 Solar Phys. 7, 377.CrossRefGoogle Scholar
Coakley, P., Hersekowitz, N., Hubbard, R. & Joyce, G. 1978 Phys. Rev. Lett. 40, 230.Google Scholar
De, Groot J. S., Barnes, C., Walstead, A. E. & Buneman, O. 1977 Phys. Rev. Lett. 38, 1283.Google Scholar
Fälthammar, C.-G., Akasofu, S.-I. & Alfvén, H. 1978 Nature, 275, 185.CrossRefGoogle Scholar
Goertz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Haddad, G. I. & Adair, J. E. 1965 IEEE Trans. on Electron Devices, ED 12, 536.Google Scholar
Knorr, G. & Goertz, C. K. 1974 Astrophys. Space Sci. 31, 209.CrossRefGoogle Scholar
Louisell, W. H. 1960 Coupled Mode and Parametric Electronics. Wiley.Google Scholar
Montgomery, D. & Joyce, G. 1969 J. Plasma Phys. 3, 1.CrossRefGoogle Scholar
Morse, R. L. & Nielson, C. W. 1971 Phys. Rev. Lett. 26, 3.CrossRefGoogle Scholar
Penrose, O. 1960 Phys. Fluids, 3, 258.CrossRefGoogle Scholar
Quon, B. H. & Wong, A. Y. 1976 Phys. Rev. Lett. 37, 1393.Google Scholar
Skawhan, S. D., Fälthammar, C.-G. & Block, L. P. 1978 J. Geophys. Res. 83, 1049.CrossRefGoogle Scholar
Smith, R. A. & Goertz, C. K. 1978 J. Geophys. Res. 83, 2617.Google Scholar
Torvén, S. & Babic, M. 1975 Proceedings of 12th International Conference on Phenomena in Ionized Gases, Pt I, p. 124. North-Holland.Google Scholar
Wahlberg, C. 1977 a J. Plasma Phys. 18, 415.CrossRefGoogle Scholar
Wahlberg, C. 1977 b Proceedings of ICTP College and Third International Kiev Conference, p. 361. IAEA.Google Scholar
Whitham, G. B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar