Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T12:18:43.984Z Has data issue: false hasContentIssue false

On the evolution and enhanced relaxation of a homogeneous isotropic two-dimensional plasma in a uniform magnetic field

Published online by Cambridge University Press:  13 March 2009

M. J. Haggerty
Affiliation:
Center for Statistical Mechanics and Thermodynamics, The University of Texas at Austin

Abstract

An enhancement of evolution rates in two-dimensional plasma models by a large factor containing the square root of the coupling parameter is known to occur. It is shown here to persist even when all collective effects are removed from weak-coupling calculations, under a simplified boundary condition preserving the isotropy of the system. Long-range vorticity is shown to develop. A careful treatment of time integrals allows irreversibility to be discussed with fewer ambiguities than usual with respect to limit ordering. Applications to three- dimensional laboratory plasmas are tentatively suggested. Future computer simulations should determine the usefulness of the comparatively simple relationships found among moments of the pair correlation. The new effects are shown to be qualitatively similar to some found in other approaches to plasma interactions in uniform magnetic fields.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham-shrauner, B. 1969 Physica, 43, 95.CrossRefGoogle Scholar
Baldwin, D. E. & Watson, C. J. H. 1977 Plasma Phys. 19, 517.CrossRefGoogle Scholar
Baus, M. 1977 Physica, 88A, 336; see also Phys. Rev. A 15, 790.CrossRefGoogle Scholar
Belyaev, S. T. 1959 Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. 3 (Ed. Leontovich, M. A. and Turkevich, J.), p. 77. Pergamon.Google Scholar
Cheng, C. Z. & Okuda, H. 1977 Phys. Rev. Lett. 38, 708.CrossRefGoogle Scholar
Davidson, R. & Kozak, J. J. 1970 J. Math. Phys. 11, 1420.CrossRefGoogle Scholar
Edwards, S. F. & Taylor, J. B. 1974 Proc. Roy. Soc. A 336, 257.Google Scholar
Guo, T. C. & Guo, W. W. 1975 Bull. Acad. Roy. Belgique Cl. Sc. 60, 1490; see also Physica 79A, 120.Google Scholar
Haggerty, M. J 1967 Phys. Fluids, 10, 2199.CrossRefGoogle Scholar
Haggerty, M. J. 1971 Physica, 51, 477.CrossRefGoogle Scholar
Haggerty, M. J. & Severne, G. 1976 Adv. Chem. Phys. 35, 119.Google Scholar
Hinton, F. L. & Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.CrossRefGoogle Scholar
Hockney, R. W 1967 Astrophys. J. 150, 797.CrossRefGoogle Scholar
Hohl, F. 1969 NASA Technical Note D.5200.Google Scholar
Hsu, J. -Y., Montgomery, D. & Joyce, G. 1974 a J. Plasma Phys. 12, 21.CrossRefGoogle Scholar
Hsu, J. -Y., Joyce, G. & Montgomery, D. 1974 b J. Plasma Phys. 12, 27.CrossRefGoogle Scholar
Ichimaru, S. 1973 Basic Principles of Plasma Physics. Benjamin.Google Scholar
Ichimaru, S. & Rosenbluth, M. N. 1970 Phys. Fluids, 13, 2778.CrossRefGoogle Scholar
Joyce, G. & Montgomery, D. 1973 J. Plasma Phys. 10, 107.CrossRefGoogle Scholar
Kamimura, T. & Dawson, J. M. 1976 Phys. Rev. Lett. 36, 313.CrossRefGoogle Scholar
Krommes, J. A. & Oberman, C. 1976 J. Plasma Phys. 16, 229.CrossRefGoogle Scholar
Lee, Y. C. & Liu, C. S. 1973 Phys. Rev. Lett. 30, 361.CrossRefGoogle Scholar
Mahajan, S. M., Guzdar, P. N., Kaw, P. K. & Oberman, C. 1977 Princeton Plasma Physics Laboratory Preprint 1351.Google Scholar
Minorsky, N. 1962 Nonlinear Oscillations, ch. 16. Van Nostrand.Google Scholar
Misguich, J. H. & Balescu, R. 1975 a Physica, 79 C, 373.Google Scholar
Misguich, J. H. & Balescu, R. 1975b Bull. Acad. Roy. Belgique Cl. Sc. 61, 210.Google Scholar
Moffat, M. J. 1974 Physica, 74, 355.CrossRefGoogle Scholar
Montgomery, D. 1967 Lectures in Theoretical Physics, vol. 9 C (Ed. Brittin, W. E.). Gordon and Breach.Google Scholar
Montgomery, D. 1975 Plasma Physics: Lee Houches 1972 (Ed. DeWitt, C. and Peyraud, J.). Gordon and Breach.Google Scholar
Montgomery, D. 1976 Physica, 82 C, 111.Google Scholar
Okuda, H. & Dawson, J. 1973 Phys. Fluids, 16, 408.CrossRefGoogle Scholar
Ostriker, J. P. & Davidsen, A. F. 1968 Astrophys. J. 151, 679.CrossRefGoogle Scholar
Radin, S. 1972 Phys. Fluids, 15, 91.CrossRefGoogle Scholar
Radin, S., Kritz, A. H. & Sandri, G. 1967 Phys. Rev. 157, 150.CrossRefGoogle Scholar
Rae, J. 1973 Recent Advances in Dynamical Astronomy (Ed. Tapley, B. D. and Szebehely, V.), p. 262. Reidel.CrossRefGoogle Scholar
Rae, J. & Davidson, R. 1973 J. Math. Phys. 14, 1706.CrossRefGoogle Scholar
Rosenbluth, M. & Ichimaru, S. 1972 Phys. Fluids, 15, 956.CrossRefGoogle Scholar
Sagdeev, R. Z. & Galeev, A. A. 1969 Nonlinear Plasma Theory. Benjamin.Google Scholar
Sandri, G. 1963 Phys. Rev. Lett. 11, 178.CrossRefGoogle Scholar
Silin, V. P. 1963 Soviet Phys. JETP, 16, 1281; see also Radiofisika, 6, 702.Google Scholar
Silin, V. P. & Chernyi, G. P. 1969 Sov. Phys. Tech. Phys. 14, 589.Google Scholar
Taylor, J. B. & Monamara, B. 1971 Phys. Fluids, 14, 1492.CrossRefGoogle Scholar
Vahala, G. 1972 J. Plasma Phys. 8, 357.CrossRefGoogle Scholar
Vahala, G. & Montgomery, D. 1971 J. Plasma Phys. 6, 425.CrossRefGoogle Scholar
Voslamber, D. 1972 Phys. Fluids, 15, 955.CrossRefGoogle Scholar
Weinstock, J. 1976 Phys. Fluids, 19, 531.CrossRefGoogle Scholar