Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:56:59.381Z Has data issue: false hasContentIssue false

On the accuracy of the symmetric ergodic magnetic limiter map in tokamaks

Published online by Cambridge University Press:  02 July 2010

A. R. SOHRABI
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran ([email protected])
S. M. JAZAYERI
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran ([email protected])
M. MOLLABASHI
Affiliation:
Department of Physics, Iran University of Science and Technology, Narmak, Tehran, Iran ([email protected])

Abstract

A new symmetric symplectic map for an ergodic magnetic limiter (EML) is proposed. A rigorous mapping technique based on the Hamilton–Jacobi equation is used for its derivation. The system is composed of the equilibrium field, which is fully integrable, and a Hamiltonian perturbation. The equilibrium poloidal flux function is a solution of the Grad–Schlüter–Shafranov equation. This equation is written in polar toroidal coordinate in order to take into account the outward Shafranov shift. The static perturbation field breaks the exact axisymmetry of the equilibrium field and creates a region of chaotic field lines near the plasma edge. The new symmetric EML map is compared with the conventional (asymmetric) EML map which is derived by applying delta-function method. The accuracy of the maps is considered through mean energy error criterion and maximal Lyapunov exponents. For asymmetric and symmetric maps the approximate location of the main cantorus near the edge of plasma is determined with high accuracy by using mean energy error. The forward–backward error criterion is applied to show the relation between the accuracy of the symmetric EML map and the number of EML rings. We also report on the effect of the number of EML rings on the maximal Lyapunov exponent of the symmetric EML map.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Wesson, J. 1982 Tokamaks. Oxford, U.K.: Oxford University Press.Google Scholar
[2]Friedberg, J. P. 1987 Ideal Magnetohydrodynamics. New York: Plenum.CrossRefGoogle Scholar
[3]Kerst, D. W. 1962 J. Nucl. Energy, Part C 4, 253.Google Scholar
[4]Cary, J. R. and Littlejohn, R. G. 1983 Ann. Phys. (N.Y.) 151, 1.CrossRefGoogle Scholar
[5]Salat, A. and Naturforsch, Z. 1985 Teil A 40, 959.Google Scholar
[6]Elsasser, K.Plasma Phys. Control. Fusion 28, 1743.CrossRefGoogle Scholar
[7]Hinton, F. L. and Hazeltine, R. D. 1976 Rev. Mod. Phys. 48, 239.CrossRefGoogle Scholar
[8]Boozer, A. H. 1984 Phys. Fluids 27, 2055.CrossRefGoogle Scholar
[9]Morrison, P. J. 1998 Rev. Mod. Phys. 70, 467; 2000 Phys. Plasma 7, 2279.CrossRefGoogle Scholar
[10]Abdullaev, S. S. 2004 Nucl. Fusion 44, S12.CrossRefGoogle Scholar
[11]Balescu, R., Vlad, M. and Spineanu, F. 1998 Phys. Rev. E 58, 951.CrossRefGoogle Scholar
[12]Finken, K. H. 1997 Fusion Eng. Des. 37, 379; 1997 Nucl. Fusion 37, 583; 1998 Trans. Fusion Technol. 33, 291.CrossRefGoogle Scholar
[13]Nicolai, A. 1997 Fusion Eng. Des. 37, 347.CrossRefGoogle Scholar
[14]Kaleck, A., Hassler, M. and Evans, T. 1997 Fusion Eng. Des. 37, (1997)353.CrossRefGoogle Scholar
[15]Arnold, V. I. 1989 Mathematical Methods of Classical Mechanics. Berlin: Springer.CrossRefGoogle Scholar
[16]Boozer, A. H. 1983 Phys. Fluids 26, 1288.CrossRefGoogle Scholar
[17]Meiss, J. D. 1992 Rev. Mod. Phys. 64, 795.CrossRefGoogle Scholar
[18]Abdullaev, S. S. 1999 J. Phys. A: Math. Gen. 32, 2745.CrossRefGoogle Scholar
[19]Abdullaev, S. S. 2002 J. Phys. A 35, 2811.CrossRefGoogle Scholar
[20]Abdullaev, S. S. 2006 Construction of Mappings for Hamiltonian Systems and Their Applications. Berlin: Springer.Google Scholar
[21]Balescu, R. 1998 Phys. Rev. E 58, 3781.CrossRefGoogle Scholar
[22]Engelhardt, W., Feneberg, W. J. 1978 Nucl. Mater. 76 & 77, (1978) 518.CrossRefGoogle Scholar
[23]Feneberg, W. and Wolf, G. H. 1981 Nucl. Fusion 21, 669.CrossRefGoogle Scholar
[24]Samain, A., Grosman, A. and Feneberg, W. J. 1982 Nucl. Mater. 111 & 112, 408.CrossRefGoogle Scholar
[25]Abdullaev, S. S., Finken, K. H., Jakubowski, M. W., Kasilov, S. V., Kobayashi, M., Reiser, D., Reiter, D., Runov, A. M. and Wolf, R. 2003 Nucl. Fusion 43, 299.CrossRefGoogle Scholar
[26]Abdullaev, S. S., Finken, K. H., Kaleck, A., Spatschek, K. H. and Wolf, G. 1998 Czechoslovak J. Phys. 48, 319.CrossRefGoogle Scholar
[27]Karger, F. and Lackner, F. 1977 Phys. Lett. A 61, 385.CrossRefGoogle Scholar
[28]McCool, S. C., Wootton, A. J., Aydemir, A. Y. et al. 1989 Nucl. Fusion 29, 547.CrossRefGoogle Scholar
[29]Martin, T. J. and Taylor, J. B. 1984 Plasma Phys. Control. Fusion 26, 321.CrossRefGoogle Scholar
[30]Portela, J. S. E., Viana, R. L. and Caldas, I. L. 2003 Physica A 317, 411.CrossRefGoogle Scholar
[31]Sohrabi, A. R. and Jazayeri, S. M. 2008 In: The Sixth EUROMECH Nonlinear Dynamics Conference (ENOC 2008). Russia: Saint Petersburg.Google Scholar
[32]Yu, X. Y. and DeGrassie, J. S. (Nov. 1986) Fusion Research Center, Report FRC-292, University of Texas, Austin, TX.Google Scholar
[33]Ullmann, K. and Caldas, I. L. 2000 Chaos, Solit. Fract. 11, 2129.CrossRefGoogle Scholar
[34]da Silva, E. C., Caldas, I. L. and Viana, R. L. 2001 Phys. Plasmas 8, 2855.CrossRefGoogle Scholar
[35]da Silva, E. C., Caldas, I. L. and Viana, R. L. 2002 Chaos Solitons Fractals 14, 403.CrossRefGoogle Scholar
[36]Roberto, M., da Silva, E. C., Caldas, I. L., Viana and Braz, R. L. 2004 J. Phys. 34, 1759.Google Scholar
[37]Roberto, M., da Silva, E. C., Caldas, I. L. and Viana, R. L. 2004 Phys. Plasmas 11, 214.CrossRefGoogle Scholar
[38]Constantinescu, D., Dumbrajs, O., Igochine, V. and Weyssow, B. 2008 Nucl. Fusion 48, 024017.CrossRefGoogle Scholar
[39]Kucinski, M. Y. and Caldas, I. L. 1987 Z. Naturforsch 42a, 1124.CrossRefGoogle Scholar
[40]Kucinski, M. Y., Caldas, I. L., Monteiro, L. H. A. and Okano, V. J. 1990 Plasma Phys. 44, 303.CrossRefGoogle Scholar
[41]Bartle, R. G. and Sherbet, D. R. 1982 Introduction to Real Analysis. New York: Wiley.Google Scholar
[42]Niven, I. 1956 Irrational Numbers. The Mathematical Association of America MR 18, 195C.CrossRefGoogle Scholar
[43]Efthymiopoulos, C., Contopoulos, G., Voglis, N. and Dvorak, R. J. 1997 Phys. A: Math. Gen. 30, 8167.CrossRefGoogle Scholar
[44]Aubry, S. 1978 In: Solitons and Condensed Matter Physics (ed. Bishop, A. R. and Schneider, T.). Berlin: Springer, p. 264.CrossRefGoogle Scholar
[45]Percival, I. C. 1979 In: Nonlinear Dynamics and the Beam-Beam Interaction (ed. Month, M. and Herrera, J. C.). Woodbury, NY: American Institute of Physics, p. 302.Google Scholar
[46]Lichtenberg, A. J. M. A. 1992 Lieberman, Regular and Chaotic Dynamics, 2nd edn.New York: Springer Verlag.CrossRefGoogle Scholar