Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:45:34.179Z Has data issue: false hasContentIssue false

On error field penetration processes in magnetic island mode locking

Published online by Cambridge University Press:  13 December 2013

H. H. Wang
Affiliation:
MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Z. X. Wang*
Affiliation:
MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
X. G. Wang
Affiliation:
School of Physics, Peking University, Beijing 100871, China
*
Email address for correspondence: [email protected]

Abstract

Error field penetration processes in magnetic island mode locking with the time-varying and fixed boundary perturbations are investigated numerically by using a two-dimensional resistive magnetohydrodynamic model in slab geometry. The evolution of various poloidal torques on the rational surface in the processes is analyzed in detail. In particular, three different states with the fixed boundary perturbations, viz. below the threshold (nearly locked regime), on the threshold (just locked regime), and above the threshold (strongly locked regime), are discussed and compared with the physical processes of the Rutherford regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boozer, A. H. 1996 Phys. Plasmas 3, 4620.Google Scholar
Buttery, R. J., De' Benedetti, M., Gates, D. A., Gribov, Y., Hender, T. C., La Haye, R. J., Leahy, P., Leuer, J. A., Morris, A. W., Santagiustina, A., et al. 1999 Nucl. Fusion 39, 1827.Google Scholar
Buttery, R. J., De' Benedetti, M., Hender, T. C. and Tubbing, B. J. D. 2000 Nucl. Fusion 40, 807.Google Scholar
Callen, J. D. 2011 Nucl. Fusion 51, 094026.CrossRefGoogle Scholar
Fishpool, G. M. and Haynes, P. S. 1994 Nucl. Fusion 34, 109.Google Scholar
Fitzpatrick, R. 1993 Nucl. Fusion 33, 1049.CrossRefGoogle Scholar
Fitzpatrick, R. 1998 Phys. Plasmas 5, 3325.CrossRefGoogle Scholar
Fitzpatrick, R. 2003 Phys. Plasmas 10, 1782.Google Scholar
Hender, T. C., Fitzpatrick, R., Morris, A. W., Carolan, P. G., Durst, R. D., Edlington, T., Ferreira, J., Fielding, S. J., Haynes, P. S., Hugill, J., et al. 1992 Nucl. Fusion 32, 2091.CrossRefGoogle Scholar
Hender, T. C., Wesley, J. C., Bialek, J., Bondeson, A., Boozer, A. H., Buttery, R. J., Garofalo, A., Goodman, T. P., Granetz, R. S., Gribov, Y.et al., 2007 Nucl. Fusion 47, S128.Google Scholar
Hu, Q. M., Yu, Q., Rao, B., Ding, Y. H., Hu, X. W., Zhuang, G. and the J-TEXT Team 2012 Nucl. Fusion 52, 083011.Google Scholar
Jensen, T. H. and Leonard, A. W. 1991 Phys. Fluids B 3, 3422.CrossRefGoogle Scholar
Jin, W., Ding, Y. H., Rao, B., Hu, Q. M., Jin, X. S., Wang, N. C., Zhang, X. Q., Wang, Z. J., Chen, Z. Y., Zhuang, G., et al. 2013 Plasma Phys. Control. Fusion 55, 035010.CrossRefGoogle Scholar
Kikuchi, Y., Finken, K. H., Jakubowski, M., Lehnen, M., Reiser, D., Sewell, G., Wolf, R. C. and the TEXTOR team 2006 Plasma Phys. Control. Fusion 48, 169.Google Scholar
Lazzaro, E., Buttery, R. J., Hender, T. C., Zanca, P., Fitzpatrick, R., Bigi, M., Bolzonella, T., Coelho, R., DeBenedetti, M., Nowak, S.et al., 2002 Phys. Plasmas 9, 3906.Google Scholar
Liu, Y., Connor, J. W., Cowley, S. C., Ham, C. J., Hastie, R. J. and Hender, T. C. 2012 Phys. Plasmas 19, 102507.Google Scholar
Ma, Z. W., Wang, X. and Bhattacharjee, A. 1996 Phys. Plasmas 3, 2427.Google Scholar
Mirnov, S., Wesley, J., Fujisawa, N., Gribov, Y., Gruber, O., Hender, T., Ivanov, N., Jardin, S., Lister, J., Perkins, F.et al., 1999 Nucl. Fusion 39, 2251.Google Scholar
Nave, M. F. F. and Wesson, J. A. 1990 Nucl. Fusion 30, 2575.Google Scholar
Parker, R. D. 1992 Theory of Fusion Plasmas. Proceedings of the Joint Varenna-Lausanne International Workshop, Varenna, Italy. Bologna, Italy: Editrice Compositori, p. 399.Google Scholar
Rutherford, P. H. 1973 Phys. Fluids 16, 1903.Google Scholar
Waelbroeck, F. L., Joseph, I., Nardon, E., Bécoulet, M. and Fitzpatrick, R. 2012 Nucl. Fusion 52, 074004.Google Scholar
Wang, X. and Bhattacharjee, A. 1997 Phys. Plasmas 4, 748.CrossRefGoogle Scholar
Wang, Z. X., Wang, X., Dong, J. Q., Kishimoto, Y. and Li, J. Q. 2008 Phys. Plasmas 15, 082109.CrossRefGoogle Scholar
Wang, Z. X., Wang, X. G., Dong, J. Q., Lei, Y. A., Long, Y. X., Mou, Z. Z. and Qu, W. X. 2007 Phys. Rev. Lett. 99, 185004.Google Scholar
Wang, H. H., Wang, Z. X., Wang, X. Q. and Wang, X. G. 2013 Phys. Plasmas 20, 062105.CrossRefGoogle Scholar
Wolf, R. C., Biel, W., de Bock, M. F. M., Finken, K. H., Gunter, S., Hogeweij, G. M. D., Jachmich, S., Jakubowski, M. W., Jaspers, R. J. E., Kramer-Flecken, A., et al. 2005 Nucl. Fusion 45, 1700.Google Scholar
Wolfe, S. M., Hutchinson, I. H., Granetz, R. S., Rice, J., Hubbard, A., Lynn, A., Phillips, P., Hender, T. C., Howell, D. F., La Haye, R. J., et al. 2005 Phys. Plasmas 12, 056110.Google Scholar
Xu, T., Hu, Q. M., Hu, X. W. and Yu, Q. Q. 2011 Chin. Phys. Lett. 28, 095202.CrossRefGoogle Scholar
Yu, Q., Güenter, S. and Finken, K. H. 2009 Phys. Plasmas 16, 042301.CrossRefGoogle Scholar
Yu, Q., Güenter, S., Kikuchi, Y. and Finken, K. H. 2008 Nucl. Fusion 48, 024007.CrossRefGoogle Scholar
Zha, X. J., Zhu, S. Z., Yu, Q. Q. and Wang, Y. 2005 Chin. Phys. 14, 2552.Google Scholar