Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T22:25:06.954Z Has data issue: false hasContentIssue false

On equations for ion cyclotron modes in ‘warm’ bounded plasmas

Published online by Cambridge University Press:  06 July 2023

Ya.I. Kolesnichenko
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
V.V. Lutsenko
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
A.V. Tykhyy*
Affiliation:
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine
*
Email address for correspondence: [email protected]

Abstract

An equation describing eigenmodes in the ion cyclotron frequency range in ‘warm’ bounded plasmas, i.e. eigenmodes which are absent in the two-fluid model but exist in kinetic theory due to finite Larmor radius of the ions, is derived for the first time. It is valid for electrostatic modes but the developed approach is generic. Calculations are carried out for two cases: first, for a homogeneous magnetic field; second, taking into account the effects of toroidicity in tokamaks. It is found that, in general, equations for eigenmodes in warm plasmas do not reduce to second-order differential equations (in contrast to those which are usually used to describe the radial structure of eigenmodes in fusion devices). The study of modes in warm plasmas is of interest, in particular, in connection with the recent observations of superthermal ion cyclotron emission in the NSTX-U spherical torus and DIII-D tokamak, which can be hardly explained by conventional theories employing fast magnetoacoustic modes.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. 1972 Handbook of Mathematical Functions. Applied Mathematics Series, vol. 55. U.S. Government Printing Office.Google Scholar
Akhiezer, A.I., Akhiezer, I.A., Polovin, R.V., Sitenko, A.G. & Stepanov, K.N. 1975 Plasma electrodynamics. Linear Theory, vol. 1. Pergamon Press.Google Scholar
Belikov, V.S. & Kolesnichenko, Y.I. 1982 Derivation of the quasi-linear theory equations for the axisymmetric toroidal systems. Plasma Phys. 24 (1), 61.CrossRefGoogle Scholar
Burdo, O. & Kolesnichenko, Y.I. 2020 High frequency fast magnetoacoustic modes in the plasma core. Phys. Lett. A 384 (32), 126825.CrossRefGoogle Scholar
Carbajal, L., Dendy, R., Chapman, S. & Cook, J. 2017 Quantifying fusion born ion populations in magnetically confined plasmas using ion cyclotron emission. Phys. Rev. Lett. 118, 105001.CrossRefGoogle ScholarPubMed
Coppi, B. 1993 Origin of radiation emission induced by fusion reaction products. Phys. Lett. A 172 (6), 439442.CrossRefGoogle Scholar
Cottrell, G., Bhatnagar, V., Costa, O.D., Dendy, R., Jacquinot, J., McClements, K., McCune, D., Nave, M., Smeulders, P. & Start, D. 1993 Ion cyclotron emission measurements during jet deuterium-tritium experiments. Nucl. Fusion 33 (9), 1365.CrossRefGoogle Scholar
Crocker, N., Tang, S., Thome, K., Lestz, J., Belova, E., Zalzali, A., Dendy, R., Peebles, W., Barada, K., Hong, R., et al. 2022 Novel internal measurements of ion cyclotron frequency range fast-ion driven modes. Nucl. Fusion 62 (2), 026023.CrossRefGoogle Scholar
DeGrandchamp, G., Lestz, J., Zeeland, M.V., Du, X., Heidbrink, W., Thome, K., Crocker, N. & Pinsker, R. 2022 Mode structure measurements of ion cyclotron emission and sub-cyclotron modes on DIII-D. Nucl. Fusion 62 (10), 106033.CrossRefGoogle Scholar
DeGrandchamp, G., Thome, K., Heidbrink, W., Holmes, I. & Pinsker, R. 2021 Upgrades to the ion cyclotron emission diagnostic on the DIII-D tokamak. Rev. Sci. Instrum. 92, 033543.CrossRefGoogle Scholar
Dendy, R. 1994 Interpretation of ion cyclotron emission from fusion and space plasmas. Plasma Phys. Control. Fusion 36 (12B), 163.CrossRefGoogle Scholar
Dendy, R., McClements, K., Lashmore-Davies, C., Majeski, R. & Cauffman, S. 1994 A mechanism for beam driven excitation of ion cyclotron harmonic waves in the tokamak fusion test reactor. Phys. Plasmas 1 (10), 34073413.CrossRefGoogle Scholar
Fredrickson, E., Gorelenkov, N., Bell, R., Diallo, A., LeBlanc, B., Lestz, J., Podestá, M. & NSTX team 2021 Chirping ion cyclotron emission (ICE) on NSTX-U. Nucl. Fusion 61 (8), 086007.CrossRefGoogle Scholar
Fülöp, T., Kolesnichenko, Y.I., Lisak, M. & Anderson, D. 1997 Origin of superthermal ion cyclotron emission in tokamaks. Nucl. Fusion 37 (9), 1281.CrossRefGoogle Scholar
Gorelenkov, N.N. 2016 Energetic particle-driven compressional Alfvén eigenmodes and prospects for ion cyclotron emission studies in fusion plasmas. New J. Phys. 18 (10), 105010.CrossRefGoogle Scholar
Harris, E. 1961 Plasma instabilities associated with anisotropic velocity distributions. J. Nucl. Energy C 2 (1), 138145.CrossRefGoogle Scholar
Mikhailovskii, A. 1986 Theory of collective processes in a tokamak with a group of fast ions. In Reviews of Plasma Physics (ed. M.A. Leontovich), vol. 9. Consultants Bureau.Google Scholar
Richardson, A. 2019 2019 NRL Plasma Formulary. Naval Research Laboratory.Google Scholar
Shafranov, V. 1967 Electromagnetic waves in a plasma. In Reviews of Plasma Physics (ed. M.A. Leontovich), vol. 3. Consultants Bureau.CrossRefGoogle Scholar
Stix, T. 1992 Waves in Plasmas. Springer.Google Scholar
Thome, K., Pace, D., Pinsker, R., Zeeland, M.V., Heidbrink, W. & Austin, M. 2019 Central ion cyclotron emission in the DIII-D tokamak. Nucl. Fusion 59 (8), 086011.CrossRefGoogle Scholar