Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T00:54:39.288Z Has data issue: false hasContentIssue false

Numerical simulations to study whistler turbulence by kinetic Alfvén wave

Published online by Cambridge University Press:  13 April 2011

R. P. SHARMA
Affiliation:
Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, India ([email protected], [email protected])
K. BATRA
Affiliation:
Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, India ([email protected], [email protected])
N. K. DWIVEDI
Affiliation:
Plasma Simulation Laboratory, Centre for Energy Studies, Indian Institute of Technology, Delhi-110016, India ([email protected], [email protected])

Abstract

This work presents the model equations governing the excitation of weak whistler by a stronger Kinetic Alfvén wave (KAW) in the plasma having β value (β ≫ me/mi, where beta is the ratio of the ion sound speed to the Alfvén speed), applicable to magnetotail in Earth's magnetosphere, when the ponderomotive nonlinearity is incorporated in the KAW dynamics. Numerical solution of the model equations has been obtained when the incident pump KAW is having a small perturbation. Energy exchange between main KAW and perturbation and the resulting localized structures of the KAW have been studied. A weak whistler signal propagating in these localized structures is amplified and leads to the development of envelope solitons. Our result reveals that the amplified (excited) whistler has an electric field power spectrum that is steeper than k−8/3. This result is consistent with recent observations by the Cluster spacecraft Eastwood et al. (Phys. Rev. Lett., vol. 102, 2009, 035001) in the magnetotail region of the Earth's magnetosphere.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Stefant, R. J. 1970 Phys. Fluids 13, 440.CrossRefGoogle Scholar
[2]Goertz, C. K. and Boswell, R. W. 1979 J. Geophys. Res. 84, 7239.CrossRefGoogle Scholar
[3]Chen, L., Lin, Z. and White, R. 2001 Phys. Plasmas 8, 4713.CrossRefGoogle Scholar
[4]Champeaux, S., Passot, T. and Sulem, P. L. 1997 J. Plasma Phys. 58, 665.CrossRefGoogle Scholar
[5]Champeaux, S., Passot, T. and Sulem, P. L. 1998 Phys. Plasmas 5, 100.CrossRefGoogle Scholar
[6]Lavedar, D., Passot, T. and Sulem, P. L. 2001 Physica D 152–153, 694.CrossRefGoogle Scholar
[7]Lavedar, D., Passot, T. and Sulem, P. L. 2002 Phys. Plasmas 9, 293.CrossRefGoogle Scholar
[8]Axford, W. I. and Hines, C. O. 1961 Can. J. Phys. 39, 1433.CrossRefGoogle Scholar
[9]Dungey, J. W. 1961 Phys. Rev. Lett. 6, 47.CrossRefGoogle Scholar
[10]Southwood, D. J. 1968 Planet. Space Sci. 16, 587.CrossRefGoogle Scholar
[11]Chaston, C. C., Johnson, J. R., Wilber, M., Acuna, M., Goldstein, M. L. and Reme, H. 2009 Phys. Rev. Lett. 102, 015001.CrossRefGoogle Scholar
[12]Rogers, B. N., Denton, R. E., Drake, J. F. and Shay, M. A. 2001 Phys. Rev. Lett. 87, 195004.CrossRefGoogle Scholar
[13]Larsson, J. and Stenflo, L. 1975 J. Geophys. Res., 80, 23252326.CrossRefGoogle Scholar
[14]Helliwell, R. A. 1965 Whistler and Related Ionosphereic Phenomenon. Stanford: Stanford University press.Google Scholar
[15]Walker, A. D. M. 1976 Rev. Geophys. Space Phys. 14, 629.CrossRefGoogle Scholar
[16]Shawhan, S. D. 1979 Magnetospheric plasma waves. In: Solar System Plasma Physics, Vol. 3 (eds. Kennel, C. F., Lanzerotti, L. J. and Parker, E. N.). Amsterdam: North-Holland, pp. 211.Google Scholar
[17]Alpert, Y. 1980 J. Atmos. Terr. Phys. 42, 1.CrossRefGoogle Scholar
[18]Al'pert, Y. 1983 The Near Earth and Interplanetary Plasma, Vols. 1 and 2. Cambridge: Cambridge University Press.Google Scholar
[19]Carpenter, D. L. 1983 Radio Sci. 18, 917.CrossRefGoogle Scholar
[20]Kennel, C. F. and Engelmann, F. 1966 Phys. Fluids 9, 2377.CrossRefGoogle Scholar
[21]Ji, H., Terry, S., Yamada, M., Kulsrud, R., Kuritsyn, A. and Ren, Y. 2004 Phys. Rev. Lett. 92, 115001.CrossRefGoogle Scholar
[22]Eastwood, J. P., Phan, T. D., Bale, S. D. and Tjulin, A. 2009 Phys. Rev. Lett. 102, 035001.CrossRefGoogle Scholar
[23]Leamon, R. J., Smith, C. W., Ness, N. F. and Wong, H. K. 1999 J. Geophys. Res. 104, 22331.CrossRefGoogle Scholar
[24]Stawicki, O., Gary, S. P. and Li, H. J. 2001 Geophys. Res. 106, 8273.CrossRefGoogle Scholar
[25]Sharma, R. P. and Shukla, P. K. 1983 Phys. Fluids 26, 87.CrossRefGoogle Scholar
[26]Shukla, P. K. and Stenflo, L. 1995 Physica Scripta T60, 3235.CrossRefGoogle Scholar
[27]Yukhimuk, V., Dupre, R. R. and Symbalisty, E. 1999 Phys. Plasmas 6, 264.CrossRefGoogle Scholar
[28]Gary, S. P., Saito, S. and Li, H. 2008 Geophys. Res. Lett. 35, L02104.CrossRefGoogle Scholar
[29]Bellan, P. M. and Stasiewicz, K. 1998 Phys. Rev. Lett. 80, 3523.CrossRefGoogle Scholar
[30]Shukla, A. and Sharma, R. P. 2002 J. Atmos. Sol.-Terr. Phys. 64, 661.CrossRefGoogle Scholar
[31]Shukla, P. K. and Stenflo, L. 1999 Phys. Plasmas 6, 4120.CrossRefGoogle Scholar
[32]Shukla, P. K. and Stenflo, L. 2000 Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[33]Shukla, P. K. and Stenflo, L. and Bingham, R. 1999 Phys. Plasmas 6, 1677.CrossRefGoogle Scholar
[34]Moon, H. T. 1990 Phys. Rev. Lett. 64, 412.CrossRefGoogle Scholar