Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-15T14:11:21.875Z Has data issue: false hasContentIssue false

Numerical investigations on the effects of geometrical parameters on free electron laser instability

Published online by Cambridge University Press:  01 December 2008

B. S. SHARMA
Affiliation:
Department of Physics, Government P.G. College, Kota-324001, India ([email protected])
N. K. JAIMAN
Affiliation:
Department of Physics, University of Kota, Kota-324005, India

Abstract

In this paper we numerically investigate the effects of various geometrical parameters of a backward wave oscillator (BWO), filled with a magnetized plasma of uniform density and driven by a mild relativistic solid electron beam, on the instability growth rate (Γ) of a free electron laser (FEL). The FEL instability is numerically calculated and the result is compared with the instability growth rate of an annular electron beam for the same set of parameters. The instability growth for a solid electron beam scales inversely to the seventh power of relativistic gamma factor γ0 and directly proportional to the corrugation amplitude.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bogdankevich, L. S., Kuzelev, M. V. and Rukhadze, A. A. 1981 Sov. Phys. Ups. 24, 1.CrossRefGoogle Scholar
[2]Kuzelev, M. V., Rukhadze, A. A., Strekov, P. S. and Shkvarunets, A. G. 1987 Sov. J. 13, 793.Google Scholar
[3]Wen-bin, P. and YaShen, C. Shen, C. 1988 Int. J. Electron. 65, 561.Google Scholar
[4]Tripathi, V. K. and Liu, C. S. 1990 IEEE Trans. Plasma Sci. 18, 466.CrossRefGoogle Scholar
[5]Carmel, Y. et al. 1990 IEEE Trans. Plasma Sci. 18 (3), 497506.CrossRefGoogle Scholar
[6]Aoyama, S. et al. 2007 Fusion Sci. Technol. 51, 325.CrossRefGoogle Scholar
[7]Yamazaki, H. et al. 2006 J. Plasma Phy. 72, 915.CrossRefGoogle Scholar
[8]Huang, Feng et al. 2005 High Power Laser Particle Beams 17, 1547.Google Scholar
[9]Balakirev, V. A., Miroshnichenkoa, V. L. and Fai, Ya. B. 1986 Sov. J. Plasma Phys. 12, 563.Google Scholar
[10]Joshi, C., Katsonleas, T., Dawson, J. M., Yan, Y. Y. and Slater, J. M. 1987 IEEE J. Quantum Electron. QE-23, 1571.CrossRefGoogle Scholar
[11]Granatstein, V. L. and Sprangle, P. 1977 IEEE Trans. Microwave Theory Technol. T-25, 545.CrossRefGoogle Scholar
[12]Carmel, Y., Granatstein, V. L. and Grover, A. 1983 Phy. Rev. Lett. 51 (7), 566569.CrossRefGoogle Scholar
[13]Sharma, A. and Tripathi, V. K. 1988 Phys. Fluids 31, 3375.CrossRefGoogle Scholar
[14]Jaiman, N. K. and Tripathi, V. K. 1994 Radiophys. Quantum Electron. 37, 6.CrossRefGoogle Scholar
[15]Kehs, R. A., Carmel, Y., Granatstein, V. L. and Destler, W. W. 1988 Phys. Rev. Lett. 68, 279.CrossRefGoogle Scholar
[16]Minghong, W., Zheng, L. and Ziqiang, Y. 2003 Int. J. Infrared Microwave 24, 6.Google Scholar
[17]Jaiman, N. K. and Tripathi, V. K. 1997 Phy. Plasmas 4 (7), 26872690.CrossRefGoogle Scholar