Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T15:04:02.977Z Has data issue: false hasContentIssue false

Non-thermal renormalization shielding on the electron–atom collision in partially ionized generalized Lorentzian non-thermal plasmas

Published online by Cambridge University Press:  09 May 2013

YOUNG-DAE JUNG
Affiliation:
Department of Applied Physics, Hanyang University, Ansan, Kyunggi-Do 426–791, South Korea, and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590, USA ([email protected])
WOO-PYO HONG
Affiliation:
Department of Electronics Engineering, Catholic University of Daegu, Hayang, Gyongsan, Gyungbuk 712-702, South Korea

Abstract

The non-thermal renormalization shielding effects on the elastic electron–atom collision process are investigated in partially ionized generalized Lorentzian non-thermal plasmas. The eikonal analysis for the Hamilton–Jacobi solution and impact parameter method are employed to obtain the eikonal scattering phase shift and eikonal cross section as functions of the collision energy, Debye length, impact parameter, and spectral index of the Lorentzian plasma. It is found that the non-thermal renormalization shielding effect enhances the eikonal scattering phase shift as well as the eikonal collision cross section, especially for small impact parameter domains. It is also found that the non-thermal renormalization shielding effect on the eikonal scattering phase shift decreases with an increase of the impact parameter. In addition, it is found that the maximum position of the eikonal collision cross section has receded from the collision center with an increase of the non-thermal character of the plasma.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhipov, Yu. V., Baimbetov, F. B. and Davletov, A. E. 2011 Phys. Rev. E 83, 016405.Google Scholar
Baimbetov, F. B., Nurekenov, Kh. T. and Ramazanov, T. S. 1995 Phys. Lett. A 202, 211.CrossRefGoogle Scholar
Beyer, H. F. and Shevelko, V. P. 2003 Introduction to the Physics of Highly Charged Ions. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Burke, P. G. and Joachain, C. J. 1995 Theory of Electron-Atom Collisions, Part 1: Potential Scattering. New York: Plenum.CrossRefGoogle Scholar
Fröbrich, P. and Lipperheide, R. 1996 Theory of Nuclear Reactions. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Fujimoto, T. 2004 Plasma Spectroscopy. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Hasegawa, A., Mima, K. and Duong-Van, M. 1985 Phys. Rev. Lett. 54, 2608.CrossRefGoogle Scholar
Hasegawa, A. and Sato, T. 1989 Space Plasma Physics: Vol. 1, Stationary Processes. Berlin, Germany: Springer.CrossRefGoogle Scholar
Hong, W.-P. and Jung, Y.-D. 2012 Appl. Phys. Lett. 100, 074104.CrossRefGoogle Scholar
McComb, W. D. 2004 Renormalization Methods. Oxford, UK: Oxford University Press.Google Scholar
Melose, D. 2008 Quantum Plasmadynamics. New York: Springer.CrossRefGoogle Scholar
Metawei, Z. 2000 Acta Phys. Polonica B 31, 713.Google Scholar
Ramazanov, T. S. and Dzhumagulova, K. N. 2002 Phys. Plasmas 9, 3758.CrossRefGoogle Scholar
Ramazanov, T. S., Dzhumagulova, K. N. and Omarbakiyeva, Y. A. 2005 Phys. Plasmas 12, 092702.CrossRefGoogle Scholar
Ramazanov, T., Galiyev, K., Dzhumagulova, K. N., Röpke, G. and Redmer, R. 2003 Contrib. Plasma Phys. 43, 39.CrossRefGoogle Scholar
Ramazanov, T. S. and Turekhanova, K. N. 2005 Phys. Plasmas 12, 102502.CrossRefGoogle Scholar
Parks, G. K. 2004 Physics of Space Plasmas, 2nd edn. Cambridge, UK: Westview Press.Google Scholar
Pavlov, A. 2000 Transport Processes in Plasmas with Strong Coulomb Interaction. Amsterdam, Netherlands: Gordon and Breach.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G. 2006a Phys. Scr. 73, 178.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G. 2006b Phys. Scr. 74, 145.CrossRefGoogle Scholar
Shevelko, V. P. 1997 Atoms and Their Spectroscopic Properties. Berlin, Germany: Springer.CrossRefGoogle Scholar
Shevelko, V. P. and Tawara, H. 1998 Atomic Multielectron Processes. Berlin, Germany: Springer.CrossRefGoogle Scholar
Shevelko, V. P. and Tawara, H. 2012 Atomic Processes in Basic and Applied Physics. Berlin, Germany: Springer.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2011 Rev. Mod. Phys. 83, 885.CrossRefGoogle Scholar
Smirnov, B. M. 2003 Physics of Atoms and Ions. Berlin, Germany: Springer.Google Scholar
Yoon, J.-S., Jung, Y. H., Lho, T., Yoo, S.-J., Lee, B. J. and Lee, S.-H. 2005 New J. Phys. 7, 56.CrossRefGoogle Scholar