Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T13:56:28.408Z Has data issue: false hasContentIssue false

Non-planar ion acoustic Gardner solitons in electron-positron-ion plasma with superthermal electrons and positrons

Published online by Cambridge University Press:  17 July 2012

DEB KUMAR GHOSH
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, India ([email protected])
UDAY NARAYAN GHOSH
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, India ([email protected])
PRASANTA CHATTERJEE
Affiliation:
Department of Mathematics, Siksha Bhavana, Visva Bharati University, Santiniketan, India ([email protected])

Abstract

The properties of non-planar (cylindrical and spherical) ion acoustic solitary waves (IASWs) in an unmagnetized collisionless electron-positron-ion (e-p-i) plasma, whose constituents are inertial ions and superthermal/non-Maxwellian electrons and positrons (represented by the kappa (κ) distribution), are investigated by deriving the modified Gardner (MG) equation. The well-known reductive perturbation method is employed to derive the MG equation. The basic features of non-planar IA Gardner solitons (GSs) are discussed. It is seen that the properties of non-planar IAGSs (positive and negative) differ significantly as the value of spectral index kappa changes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham-Shrauner, B., Asbridge, J. R., Bame, S. J. and Feldman, W. C. 1979 Proton-driven electromagnetic instabilities in high-speed solar wind streams. J. Geophys. Res. 84, 553559.CrossRefGoogle Scholar
Abraham-Shrauner, B. and Feldman, W. C. 1977 Electromagnetic ion-cyclotron wave growth rates and their variation with velocity distribution function shape. J. Plasma Phys. 17, 123131.CrossRefGoogle Scholar
Aoutou, K., Tribeche, M. and Zerguini, T. H. 2009 Alternative dust acoustic solitary waves in a plasma consisting of superthermal electrons and nonthermal ions having kappa-vortex-like velocity distribution function. Phys. Plasmas 16, 083701.CrossRefGoogle Scholar
Armstrong, T. P., Paonessa, M. T., Bell II, E. V. and Krimigis, S. M. 1983 Voyager observations of saturnian ion and electron phase space densities. J. Geophys. Res. 88, 88938904.CrossRefGoogle Scholar
Bryant, D. A. 2009 Debye length in a kappa-distribution plasma. J. Plasma Phys. 56, 8793.CrossRefGoogle Scholar
Chatterjee, P. and Ghosh, U. N. 2011 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Euro. Phys. J. D 63, 413.Google Scholar
Chuang, S.-H. and Hau, L.-N. 2009 The characteristics of ion acoustic solitons in non-Maxwellian plasmas. Phys. Plasmas 16, 022901.CrossRefGoogle Scholar
El-Awady, E. I., El-Tantawy, S. A., Moslem, W. M. and Shukla, P. K. 2010 Electron-positron-ion plasma with kappa distribution: ion acoustic soliton propagation. Phys. Lett. A 374, 32163219.CrossRefGoogle Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011 Nonplanar ion-acoustic solitary waves with superthermal electrons in warm plasma. Phys. Plasmas 18, 072305.CrossRefGoogle Scholar
Formisano, V., Moreno, G., Palmiotto, F. and Hedgecock, P. C. 1973 Solar wind interaction with the Earth's magnetic field, 1. Magnetosheath. J. Geophys. Res. 78, 37143730.CrossRefGoogle Scholar
Ghosh, S. and Bharuthram, R. 2008 Ion acoustic solitons and double layers in electron-positron-ion plasmas with dust particulates. Astrophys. Space Sci. 314, 121127.CrossRefGoogle Scholar
Ghosh, S. and Bharuthram, R. 2011 Ion acoustic solitary wave in electron-positron-ion plasma: effect of Landau damping. Astrophys. Space Sci. 331, 163168.CrossRefGoogle Scholar
Greaves, R. G. and Surko, C. M. 1995 An electron-positron beam-plasma experiment. Phys. Rev. Lett. 75, 38463849.CrossRefGoogle ScholarPubMed
Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Creation and uses of positron plasmas. Phys. Plasmas 1, 1439.CrossRefGoogle Scholar
Hansen, E. T. and Emshie, A. G. 1988 The Physics of Solar Flares. Cambridge, UK: Cambridge University Press.Google Scholar
Helander, P. and Ward, D. J. 2003 Positron creation and annihilation in tokamak plasmas with runaway electrons. Phys. Rev. Lett. 90, 135004.CrossRefGoogle ScholarPubMed
Hossain, M. M., Mamun, A. A. and Ashrafi, K. S. 2011 Cylindrical and spherical dust ion-acoustic Gardner solitons in a quantum plasma. Phys. Plasmas 18, 103704.CrossRefGoogle Scholar
Iqbal, M. and Shukla, P. K. 2011 Relaxation of a magnetized electron-positron-ion plasma with flows. Phys. Lett. A 375, 27252727.CrossRefGoogle Scholar
Ko, K. and Kuehl, H. H. 1979 Cylindrical and spherical Korteweg-deVries solitary waves. Phys. Fluids 22, 13431348.CrossRefGoogle Scholar
Lazar, M., Schlickeiser, R., Poedts, S. and Tautz, R. C. 2008 Counterstreaming magnetized plasmas with kappa distributions. I. Parallel wave propagation. Mon. Not. R. Astron. Soc. 390, 168174.CrossRefGoogle Scholar
Lee, N. C. 2009 Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons. Phys. Plasmas 16, 042316.CrossRefGoogle Scholar
Leubner, M. P. 1982 On Jupiter's whistler emission. J. Geophys. Res. 87, 63356338.CrossRefGoogle Scholar
Leubner, M. P. 2004 Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas 11, 1308.CrossRefGoogle Scholar
Lui, A. T. Y. and Krimigis, S. M. 1983 Energetic ion beam in the Earth's magnetotail lobe. Geophys. Res. Lett. 10, 1316.CrossRefGoogle Scholar
Mace, R. L., Hellberg, M. A. and Treumann, R. A. 2000 Electrostatic fluctuations in plasmas containing suprathermal particles. J. Plasma Phys. 59, 393416.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2001 Spherical and cylindrical dust acoustic solitary waves. Phys. Lett. A 290, 173175.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002 Cylindrical and spherical dust ion-acoustic solitary waves. Phys. Plasmas 9, 1468.CrossRefGoogle Scholar
Mannan, A. and Mamun, A. A. 2011 Nonplanar dust-acoustic Gardner solitons in a four-component dusty plasma. Phys. Rev. E 84, 026408.Google Scholar
Marsch, E., Muhlhauser, K. H., Schwenn, R., Rosenbauer, H., Pilipp, W. and Neubauer, F. M. 1982 Solar-wind protons – 3-dimensional velocity distributions and derived plasma parameters measured between 0.3-AU and 1-AU. J. Geophys. Res. 87, 5272.CrossRefGoogle Scholar
Maxon, S. and Viecelli, J. 1974 Cylindrical solitons. Phys. Fluids 17, 16141616.CrossRefGoogle Scholar
Mendis, D. A. and Rosenberg, M. 1994 Cosmic dusty plasma. Annu. Rev. Astron. Astro Phys. 32, 419463.CrossRefGoogle Scholar
Michel, F. C. 1982 Theory of Pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin, Germany: Springer-Verlag.Google Scholar
Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Ion-acoustic solitons in electron-positron-ion plasmas. Phys. Plasmas 2, 716.CrossRefGoogle Scholar
Rasheed, A., Tsintsadze, N. L., Murtaza, G. and Chaudhary, R. 2012 Nonlinear structure of ion-acoustic solitary waves in a relativistic degenerate electron-positron-ion plasma. J. Plasma Phys. 78, 133141.CrossRefGoogle Scholar
Rees, M. J. 1983 What the astrophysicist wants from the very early universe. In: The Very Early Universe (eds. Gibbons, G. W., Hawking, S. W. and Siklas, S.). Cambridge, UK: Cambridge University Press, pp. 2958.Google Scholar
Sahu, B. and Roychoudhury, R. 2004 Cylindrical and spherical ion-acoustic shock waves in multielectron temperature collisional plasma. Phys. Plasmas 11, 4871.CrossRefGoogle Scholar
Scudder, J. D., Sittler, E. C. and Bridge, H. S. 1981 Survey of the plasma electron environment of Jupiter: a view from Voyager. J. Geophys. Res. 86, 8157.CrossRefGoogle Scholar
Shah, A. and Saeed, R. 2011 Nonlinear Korteweg-de Vries-Burger equation for ion-acoustic shock waves in the presence of kappa distributed electrons and positrons. Plasma Phys. Control. Fusion 53, 095006.CrossRefGoogle Scholar
Shukla, P. K. 2006 Acceleration of ions by the radiation pressure in magnetized electron-positron-ion plasma. J. Plasma Phys. 72, 159162.CrossRefGoogle Scholar
Shukla, N. and Shukla, P. K. 2010 Generation of sheared flows by drift waves in a strongly magnetized electron-positron-ion plasma. J. Plasma Phys. 77, 339344.CrossRefGoogle Scholar
Surko, C. M., Leventhal, M. and Passner, A. 1989 Positron plasma in the laboratory. Phys. Rev. Lett. 62, 901904.CrossRefGoogle ScholarPubMed
Surko, C. M. and Murphy, T. J. 1990 Use of the positron as a plasma particle. Phys. Fluids B 2, 1372.CrossRefGoogle Scholar
Trivelpiece, A. W. 1972 Comments. Plasma Phys. Control. Fusion 1, 57.Google Scholar
Tsytovich, V. and Wharton, C. B. 1978 Comments. Plasma Phys. Control. Fusion 4, 91.Google Scholar
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 28392884.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Wazwaz, A. M. 2007 New solitons and kink solutions for the Gardner equation. Commun. Nonlin. Sci. Numer. Simul. 12, 1395.CrossRefGoogle Scholar
Wazwaz, A. M. 2009 Partial Differential Equations and Solitary Waves Theory. Berlin, Germany: Springer/Beijing, China: Higher Education Press.CrossRefGoogle Scholar
Wazwaz, A. M. 2010 A study on KdV and Gardner equations with time-dependent coefficients and forcing terms. Appl. Math. Compu. 217, 2277.Google Scholar
Wesson, J. A., Gill, R. D., Hugon, M., Schüller, F. C., Snipes, J. A., Ward, D. J., Bartlett, D. V., Campbell, D. J., Duperrex, P. A., Edwards, A. W., Granetz, R. S., Gottardi, N. A. O., Hender, T. C., Lazzaro, E., Lomas, P. J., Lopes Cardozo, N., Mast, K. F., Nave, M. F. F., Salmon, N. A., Smeulders, P., Thomas, P. R., Tubbing, B. J. D., Turner, M. F. and Weller, A. 1989 Disruptions in JET. Nucl. Fusion 29, 641.CrossRefGoogle Scholar
Williams, D. J., Mitchell, D. G. and Christon, S. P. 1988 Implications of large flow velocity signatures in nearly isotropic ion distributions. Geophys. Res. Lett. 15, 303306.CrossRefGoogle Scholar
Xue, J. K. 2003 Cylindrical and spherical dust-ion acoustic shock waves. Phys. Plasmas 10, 4893.CrossRefGoogle Scholar
Xue, J. K. 2004 Cylindrical and spherical ion-acoustic solitary waves with dissipative effects. Phys. Lett. A 322, 225230.CrossRefGoogle Scholar