Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T00:56:48.376Z Has data issue: false hasContentIssue false

Non-planar Gardner double layers in two-ion-temperature dusty plasma

Published online by Cambridge University Press:  01 May 2012

M. ASADUZZAMAN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])

Abstract

Non-planar (cylindrical and spherical) double layers (DLs) in two-ion-temperature dusty plasma, whose constituents are inertial negative dust, ions with two distinctive temperatures, and Boltzmann electrons, are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of dust-acoustic (DA) waves is derived, and its non-planar double layer solutions are analyzed numerically. The parametric regimes for the existence of DA DLs, which are found to be associated with positive potential only, are obtained. The basic features of non-planar DA DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, F. S., Ali, M. A., Ali, R. A. and Lncullet, I. I. 1998 J. Electrost. 45, 139.Google Scholar
Alinejad, H. and Mamun, A. A. 2010 Phys. Plasmas 17, 123704.CrossRefGoogle Scholar
Baisong, X., Kaifen, H. and Zuqia, H. 1999 Phys. Plasmas 6, 3808.Google Scholar
Bandyopadhyay, P., Prasad, G., Sen, A. and Kaw, P. K. 2008 Phys. Rev. Lett. 101, 065006.CrossRefGoogle Scholar
Bharuthram, R. and Shukla, P. K. 1992 Planet. Space Sci. 40, 465.CrossRefGoogle Scholar
Boström, R., Gustafsson, G., Holback, B., Holmgren, G. and Koskinen, H. 1988 Phys. Rev. Lett. 61, 82.CrossRefGoogle Scholar
D'Angelo, N. 1995 J. Phys. D 28, 1009.Google Scholar
Eliasson, B. and Shukla, P. K. 2004 Phys. Rev. E 69, 067401.Google Scholar
El-Labany, S. K. and El-Taibany, W. F. 2003 Phys. Plasmas 10, 989.CrossRefGoogle Scholar
El-Labany, S. K., El-Taibany, W. F., Mamun, A. A. and Moslem, W. M. 2004 Phys. Plasmas 11, 926.CrossRefGoogle Scholar
Ellis, T. A. and Neff, J. S. 1991 Icarus 91, 280.CrossRefGoogle Scholar
Ergun, R. E.et al. 1998 J. Geophys. Res. 25, 2041.Google Scholar
Farrell, V. M.et al. 2004 J. Geophys. Res. 65, 3504.Google Scholar
Havnes, O.et al. 1996 J. Geophys. Res. 101, 1039.CrossRefGoogle Scholar
Heinrich, J., Kim, S. H. and Merlino, R. 2009 Phys. Rev. Lett. 103, 115002.CrossRefGoogle Scholar
Hellberg Manfred, A., Verheest, F. and Cattaert, T. 2005 AIP Conf. Proc. 799, 498.CrossRefGoogle Scholar
Hershkowitz, N. 1985 Space Sci. Rev. 41, 351.CrossRefGoogle Scholar
Horányi, M., Morfill, G. E. and Grün, E. 1993 Nature 363, 144.CrossRefGoogle Scholar
Koskinen, H. E. J., Lundlin, R. and Holback, B. 1990 J. Geophys. Res. 95, 5921.CrossRefGoogle Scholar
Mamun, A. A. 1999 Astrophys. Space Sci. 268, 443.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 702.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009 Europhys. Lett. 87, 2500.Google Scholar
Mamun, A. A., Shukla, P. K. and Eliasson, B. 2009 Phys. Rev. E 80, 046406.Google Scholar
Maxon, S. and Viecelli, J. 1974 Phys. Rev. Lett. 32, 4.CrossRefGoogle Scholar
Merlino, R. L. and Goree, J. 2004 Phys. Today 57 (7), 32.CrossRefGoogle Scholar
Merrison, J., Jensen, J., Kinch, K., Mugfor, R. and Nornberg, P. 2004 Planet. Space Sci. 52, 279.CrossRefGoogle Scholar
Moslem, W. M. 2005 Chaos Solitons Fractals 23, 939.CrossRefGoogle Scholar
Newman, D. L., Goldman, M. V. and Ergun, R. E. 2002 Phys. Plasmas 9, 2337.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Rosenberg, M., Mendis, D. A. and Sheehan, D. P. 1999 IEEE Trans. Plasma Sci. 27, 239.CrossRefGoogle Scholar
Shukla, P. K. 2000 Phys. Rev. E 61, 7249.Google Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 23.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2001 IEEE Trans. Plasma Sci. 29, 221.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: IoP, pp. 827.CrossRefGoogle Scholar
Singh, N. 2000 Geophys. Res. Lett. 27, 927.CrossRefGoogle Scholar
Tagare, S. G. 1997 Phys. Plasmas 4, 3167.CrossRefGoogle Scholar
Temerin, M., Cerny, K., Lotko, W. and Mozer, F. S. 1982 Phys. Rev. Lett. 48, 1175.CrossRefGoogle Scholar
Thompson, C., Barkan, A., D'Angelo, N. and Merlino, R. L. 1997 Phys. Plasmas 4, 2331.CrossRefGoogle Scholar
Tribeche, M. and Merriche, A. 2011 Phys. Plasmas 18, 034502.CrossRefGoogle Scholar
Trigwell, S., Grable, N., Yurreri, C. U., Sharma, R. and Mazumder, M. K. 2003 IEEE Trans. Ind. Appl. 39, 79.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Plasmas. (Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.CrossRefGoogle Scholar
Zhao, H., Castle, G. S. P., Lnculet, I. I. and Bailey, A. G. 2003 IEEE Trans. Ind. Appl. 39, 612.CrossRefGoogle Scholar