Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:32:04.305Z Has data issue: false hasContentIssue false

Non-linear transverse waves in a Vlasov plasma

Published online by Cambridge University Press:  13 March 2009

S. Peter Gary
Affiliation:
Applied Mathematics Department, University of St Andrews, St Andrews, Scotland

Abstract

Non-linear transverse waves in a classical non-relativistic collisionless, Maxwellian electron gas with external magnetic field B0 are considered. There is assumed a small, sinusoidal variation in the initial electric and magnetic fields, corresponding to excitation of a discrete wave-number mode. The non-linear Vlasov equation is solved to second order in the long time limit via the Montgomery—Gorman perturbation expansion, and the time-independent, spatially homogeneous part of the second-order distribution function is used to modify the linear dispersion relation. For frequencies near the electron cyclotron frequency a non-linear damping decrement results such that, for many values of the parameters, the damping is less than the linear rate. Thus at sufficiently long times, the rate of damping of transverse electron cyclotron waves should decrease, a result similar to that for non-linear damping of longitudinal electron plasma waves.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, T. P. 1967 Phys. Fluids 10, 1269.CrossRefGoogle Scholar
Baumann, G., Braun, J. C., Feix, M. R. & Crownfield, F. R. 1968 Phys. Lett. 27 a, 88.CrossRefGoogle Scholar
Bekefi, G. 1966 Radiation Processes in Plasmas. New York: John Wiley and Sons, Inc.Google Scholar
Einaudi, F. & Axford, W. I. 1967 J. Plasma Phys. 1, 483.CrossRefGoogle Scholar
Fried, B. D. & Conte, S. P. 1961 The Plasma Dispersion Function. New York: Academic Press.Google Scholar
Frieman, E. 1963 J. Math. Phys. 4, 410.CrossRefGoogle Scholar
Frieman, E., Bodner, S. & Rutherford, P. 1963 Physics Fluids 6, 1298.CrossRefGoogle Scholar
Frieman, E. & Rutherford, P. 1964 Ann. Phys. (N.Y.) 28, 134.CrossRefGoogle Scholar
Gary, S. P. 1967 a Physics Fluids 10, 570.CrossRefGoogle Scholar
Gary, S. P. 1967 b Ph.D. Thesis, Washington University, St Louis, Missouri, U.S.A. (unpublished).Google Scholar
Knorr, G. 1963 Z. Naturforsch. 18 a, 1304.CrossRefGoogle Scholar
Montgomery, P. 1961 Phys. Rev. 123, 1077.CrossRefGoogle Scholar
Montgomery, D. & 1963 Physics Fluids 6, 1109.CrossRefGoogle Scholar
Montgomery, P. & Gorman, D. 1961 Phys. Rev. 124, 1309. (Errata: Phys. Rev. 126, 2261 (1962).)CrossRefGoogle Scholar
Montgomery, P. & Gorman, P. 1962 Physics Fluids 5, 947.CrossRefGoogle Scholar
Montgomery, D. & Tidman, P. A. 1964 Plasma Kinetic Theory. New York: McGraw- Hill Book Co., Inc.Google Scholar
Pradhan, T. 1957 Phys. Rev. 107, 1222.CrossRefGoogle Scholar
Scarf, F. L., 1962 Physics Fluids, 5, 6.CrossRefGoogle Scholar
Watanabe, T. 1966 Can. J. Phys. 44, 815.CrossRefGoogle Scholar