Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T00:22:57.978Z Has data issue: false hasContentIssue false

Nonlinear transient signal propagation in homogeneous plasma

Published online by Cambridge University Press:  13 March 2009

D. Jovanović
Affiliation:
Association Euratom-Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark
H. L. Pécseli
Affiliation:
Association Euratom-Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark
K. Thomsen
Affiliation:
Association Euratom-Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark

Abstract

The nonlinear transient evolution of a suddenly applied monochromatic wave in a homogeneous plasma is considered, with particular emphasis on the magnetized case, where ordinary and extraordinary electromagnetic waves travelling normal to B are treated. Two important features are described. First, the penetration of the wave front is shown to be accompanied by ‘radiation’ of low-frequency waves, of which ion cyclotron and lower-hybrid waves are considered here. Next, the presence of a nonlinear, second-harmonic precursor is predicted, containing two natural modes of oscillation, one with exactly twice the frequency of the fundamental, and the other a slightly frequency-shifted contribution. The analysis is readily generalized to waves other than those considered here.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baerwald, H. G. 1930 a Ann. d. Phys. 6, 295.CrossRefGoogle Scholar
Baerwald, H. G. 1930 b Ann. d. Phys. 7, 731.CrossRefGoogle Scholar
Baumgärtel, K. & Zchakaja, D. 1977 Plasmaphysik, 6, 75.CrossRefGoogle Scholar
Bornatici, M., Engelman, F., Maroli, C. & Petrillo, V. 1981 Plasma Phys. 23, 89.CrossRefGoogle Scholar
Brillouin, L. 1960 Wave Propagation and Group Velocity. Academic.Google Scholar
Buckley, R.. 1975 J. Plasma Phys. 13, 539.CrossRefGoogle Scholar
Čadež, V. M. & Jovanović, D. 1981 Spring College on Fusion Energy, Trieste, Italy, Contributed Papers.Google Scholar
Dysthe, K. B., Mjølhus, E., Pécseli, H. L. & Stenflo, L. 1978 Plasma Phys. 20, 1087.CrossRefGoogle Scholar
Dysthe, K. B. & Pécseli, H. L. 1977 Plasma Phys. 19, 931.CrossRefGoogle Scholar
Erokhin, N. S., Moiseev, S. S. & Shuklin, A. P. 1980 Soviet Phys. JETP, 52, 1088.Google Scholar
Grebogi, C., Kaufman, A. N. & Littlejohn, R. G. 1979 Phys. Rev. Lett. 43, 1668.CrossRefGoogle Scholar
Haskell, R. E. & Case, T. C. 1967 IEEE Trans. on Antennas and Propagation AP-15, 458.CrossRefGoogle Scholar
Kaw, P. K. & Nishikawa, K. 1975 J. Phys. Soc. Japan, 38, 1753.CrossRefGoogle Scholar
Kaw, P. K., Schmidt, G. & Wilcox, T. 1973 Phys. Fluids, 16, 1522.CrossRefGoogle Scholar
Kim, H. C., Stenzel, R. L. & Wong, A. Y. 1974 Phys. Rev. Lett. 33, 886.CrossRefGoogle Scholar
Manheimer, W. M. & Ott, E. 1974 Phys. Fluids, 17, 1413.CrossRefGoogle Scholar
Sato, N., Märk, E. & Popa, G. 1976 Plasma Phys. 18, 897.CrossRefGoogle Scholar
Sodha, M. S., Sharma, J. K., Tewari, D. P., Sharma, R. P. & Kanshik, S. C. 1979 J. Appl. Phys. 50, 6214.CrossRefGoogle Scholar
Tewari, D. P. & Thipathi, V. K. 1980 Phys. Rev. A21, 1698.CrossRefGoogle Scholar
Tskhakaya, D. D. 1981 J. Plasma Phys. 25, 233.CrossRefGoogle Scholar
Yu, M. Y. & Shukla, P. K. 1977 Plasma Phys. 19, 889.CrossRefGoogle Scholar