Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T14:19:29.097Z Has data issue: false hasContentIssue false

Nonlinear magnetosonic solitary and shock waves in strongly coupled quantum electron–positron–ion plasmas

Published online by Cambridge University Press:  16 May 2016

Xiaodan Wang
Affiliation:
Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Yunliang Wang*
Affiliation:
Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Tielu Liu
Affiliation:
Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Fan Zhang
Affiliation:
Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional nonlinear magnetosonic solitary and shock waves propagating perpendicular to the applied magnetic field are presented in quantum electron–positron–ion plasmas with strongly coupled classical ions and weakly coupled quantum electrons and positrons. The generalized viscoelastic hydrodynamic model is used for the ions and a quantum hydrodynamic model is introduced for the electrons and positrons. In the weakly nonlinear limit, a modified Kadomstev–Petviashvili (KP) equation with a damping term and a KP–Burgers equation have been derived in the kinetic regime and hydrodynamic regime, respectively. The analytical and numerical solutions of the modified KP and KP–Burgers equations are also presented and analysed with the typical parameters of a white dwarf star and pulsar magnetosphere, which show that the quantum plasma beta and the variation of positron number density have remarkable effects on the propagation of magnetosonic solitary and shock waves.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbari-Moghanjoughi, M. 2011 Remarkable paramagnetic features of Fermi–Dirac–Pauli plasmas. Phys. Plasmas 18, 072702.CrossRefGoogle Scholar
Akbari-Moghanjoughi, M. & Ghorbanalilu, M. 2015 Energy exchange in strongly coupled plasmas with electron drift. Phys. Plasmas 22, 112111.Google Scholar
Ali, S., Moslem, W. M., Shukla, P. K. & Schlickeiser, R. 2007 Linear and nonlinear ion-acoustic waves in an unmagnetized electron–positron–ion quantum plasma. Phys. Plasmas 14, 082307.Google Scholar
Ali, S. & ur Rahman, Ata 2014 Solitons and shocks in dense astrophysical magnetoplasmas with relativistic degenerate electrons and positrons. Phys. Plasmas 21, 042116.Google Scholar
Berezhiani, V. I., Tsintsadze, L. N. & Shukla, P. K. 1992 Influence of electron-positron pairs on the wakefields in plasmas. Phys. Scr. 46, 5556.Google Scholar
Chandra, S. & Ghosh, B. 2012 Modulational instability of electron-acoustic waves in relativistically degenerate quantum plasma. Astrophys. Space Sci. 342, 417424.Google Scholar
Chatterjee, P., Ghosh, U. N., Roy, K., Muniandy, S. V., Wong, C. S. & Sahu, B. 2010 Head-on collision of ion acoustic solitary waves in an electron-positron-ion plasma with superthermal electrons. Phys. Plasmas 17, 122314.Google Scholar
Daniel, J. & Tajima, T. 1998 Outbursts from a black hole via alfvén wave to electromagnetic wave mode conversion. Astrophys. J. 498, 296306.Google Scholar
El-Awady, E. I., El-Tantawy, S. A., Moslem, W. M. & Shukla, P. K. 2010 Electron–positron–ion plasma with kappa distribution: ion acoustic soliton propagation. Phys. Lett. A 374, 32163219.Google Scholar
El-Labany, S. K., El-Taibany, W. F., El-Samahy, A. E., Hafez, A. M. & Atteya, A. 2014 Higher-order corrections to nonlinear dust-ion-acoustic shock waves in a degenerate dense space plasma. Astrophys. Space Sci. 354, 385393.Google Scholar
Ghosh, S., Chakrabarti, N. & Shukla, P. K. 2012 Linear and nonlinear electrostatic modes in a strongly coupled quantum plasma. Phys. Plasmas 19, 072123.Google Scholar
Ghosh, S., Gupta, M. R., Chakrabarti, N. & Chaudhuri, M. 2011 Nonlinear wave propagation in a strongly coupled collisional dusty plasma. Phys. Rev. E 83, 066406.Google Scholar
Gozadinos, G., Ivlev, A. V. & Boeuf, J. P. 2003 A fluid model for colloidal plasmas under microgravity conditions. New J. Phys. 5, 32.132.9.Google Scholar
Haas, F. 2005 A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12, 062117.Google Scholar
Haas, F. & Mahmood, S. 2015 Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy. Phys. Rev. E 92, 053112.Google Scholar
Han, J., He, L., Yang, N., Han, Z. & Wang, X. 2011 Ion-acoustic shock waves and their head-on collision in a dense electron-positron-ion quantum plasma. Phys. Lett. A 375, 37943800.Google Scholar
Ikezi, H. 1986 Coulomb solid of small particles in plasmas. Phys. Fluids 29, 17641766.CrossRefGoogle Scholar
Irfan, M., Ali, S. & Mirza, A. M. 2014 Dust-acoustic solitary and rogue waves in a Thomas–Fermi degenerate dusty plasma. Astrophys. Space Sci. 353, 515523.Google Scholar
Janaki, M. S., Dasgupta, B., Gupta, M. R. & Som, B. K. 1992 Solitary magnetosonic waves with landau damping. Phys. Scr. 45, 368372.Google Scholar
Kakati, H. & Goswami, K. S. 1998 Solitary alfvén wave in an electron positron ion plasma. Phys. Plasmas 5, 42294234.CrossRefGoogle Scholar
Kaw, P. K. & Sen, A. 1998 Low frequency modes in strongly coupled dusty plasmas. Phys. Plasmas 5, 35523559.CrossRefGoogle Scholar
Malfliet, W. 2004 The $\tanh$ method: a tool for solving certain classes of nonlinear evolution and wave equations. J. Comput. Appl. Math. 164–165, 529541.Google Scholar
Marklund, M. & Brodin, G. 2007 Dynamics of spin- $1/2$ quantum plasmas. Phys. Rev. Lett. 98, 025001.Google Scholar
Marklund, M., Eliasson, B. & Shukla, P. K. 2007 Magnetosonic solitons in a fermionic quantum plasma. Phys. Rev. E 76, 067401.Google Scholar
Maroof, R., Mushtaq, A. & Qamar, A. 2016 Quantum dust magnetosonic waves with spin and exchange correlation effects. Phys. Plasmas 23, 013704.CrossRefGoogle Scholar
Masood, W., Jehan, N. & Mirza, A. M. 2010 A new equation in two dimensional fast magnetoacoustic shock waves in electron-positron-ion plasmas. Phys. Plasmas 17, 032314.Google Scholar
Max, C. & Perkins, F. 1972 Instability of a relativistically strong electromagnetic wave of circular polarization. Phys. Rev. Lett. 29, 17311734.Google Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.Google Scholar
Misra, A. P. & Shukla, P. K. 2008 Modulational instability of magnetosonic waves in a spin $1/2$ quantum plasma. Phys. Plasmas 15, 052105.Google Scholar
Misra, A. P. & Shukla, P. K. 2012 Stability and evolution of wave packets in strongly coupled degenerate plasmas. Phys. Rev. E 85, 026409.Google Scholar
Mushtaq, A., Maroof, R., Ahmad, Z. & Qamar, A. 2012 Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas. Phys. Plasmas 19, 052101.Google Scholar
Mushtaq, A. & Qamar, A. 2009 Parametric studies of nonlinear magnetosonic waves in two-dimensional quantum magnetoplasmas. Phys. Plasmas 16, 022301.Google Scholar
Mushtaq, A. & Vladimirov, S. V. 2010 Fast and slow magnetosonic waves in two-dimensional spin- $1/2$ quantum plasma. Phys. Plasmas 17, 102310.Google Scholar
Mushtaq, A. & Vladimirov, S. V. 2011 Arbitrary magnetosonic solitary waves in spin $1/2$ degenerate quantum plasma. Eur. Phys. J. D 64, 419426.Google Scholar
Orosz, J. A., Remillard, R. A., Bailyn, C. D. & McClintock, J. E. 1997 An optical precursor to the recent $x$ -ray outburst of the black hole binary gro j1655-40. Astrophys. J. 478, L83L86.Google Scholar
Popel, S. I., Vladimirov, S. V. & Shukla, P. K. 1995 Ion-acoustic solitons in electron-positron-ion plasmas. Phys. Plasmas 2, 716719.Google Scholar
Roy, K., Misra, A. P. & Chatterjee, P. 2008 Ion-acoustic shocks in quantum electron-positron-ion plasmas. Phys. Plasmas 15, 032310.Google Scholar
Roy, N., Tasnim, S. & Mamun, A. A. 2012 Solitary waves and double layers in an ultra-relativistic degenerate dusty electron-positron-ion plasma. Phys. Plasmas 19, 033705.Google Scholar
Sabry, R., Moslem, W. M. & Shukla, P. K. 2009 Planar and nonplanar ion-acoustic envelope solitary waves in a very dense electron-positron-ion plasma. Eur. Phys. J. D 51, 233240.Google Scholar
Sabry, R., Moslem, W. M. & Shukla, P. K. 2012 Freak waves in white dwarfs and magnetars. Phys. Plasmas 19, 122903.Google Scholar
Saeed, R. & Shah, A. 2010 Nonlinear korteweg-de vries-burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions. Phys. Plasmas 17, 032308.Google Scholar
Saha, A. & Chatterjee, P. 2014 Bifurcations of electron acoustic traveling waves in an unmagnetized quantum plasma with cold and hot electrons. Astrophys. Space Sci. 349, 239244.Google Scholar
Sahu, B. & Ghosh, N. K. 2013 Kadomstev–Petviashvili solitons in quantum plasmas. Astrophys. Space Sci. 343, 289292.Google Scholar
Saleem, H., Haque, Q. & Vranješ, J. 2003 Nonlinear drift waves in electron-positron-ion plasmas. Phys. Rev. E 67, 057402.Google Scholar
Shukla, P. K. & Eliasson, B. 2011 Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev. Mod. Phys. 83, 885906.Google Scholar
Shukla, P. K., Mamun, A. A. & Mendis, D. A. 2011 Nonlinear ion modes in a dense plasma with strongly coupled ions and degenerate electron fluids. Phys. Rev. E 84, 026405.Google Scholar
Ichimaru, S., Iyetomi, H. & Tanaka, S. 1987 Statistical physics of dense plasmas: thermodynamics, transport coefficients and dynamic correlations. Phys. Rep. 149, 91205.Google Scholar
Slattery, W. L., Doolen, G. D. & DeWitt, H. E. 1980 Improved equation of state for the classical one-component plasma. Phys. Rev. A 21, 20872095.CrossRefGoogle Scholar
Tiwari, R. S. 2008 Ion-acoustic dressed solitons in electron-positron-ion plasmas. Phys. Lett. A 372, 34613466.Google Scholar
Veeresha, B. M., Tiwari, S. K., Sen, A., Kaw, P. K. & Das, A. 2010 Nonlinear wave propagation in strongly coupled dusty plasmas. Phys. Rev. E 81, 036407.Google Scholar
Wang, Y. & Eliasson, B. 2014 One-dimensional rarefactive solitons in electron-hole semiconductor plasmas. Phys. Rev. B 89, 205316.Google Scholar
Wang, Y., , X. & Eliasson, B. 2013a Modulational instability of spin modified quantum magnetosonic waves in fermi-dirac-pauli plasmas. Phys. Plasmas 20, 112115.Google Scholar
Wang, Y., Shukla, P. K. & Eliasson, B. 2013b Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma. Phys. Plasmas 20, 013103.Google Scholar
Wang, Y., Zhou, Z., Qiu, H., Wang, F. & Lu, Y. 2012 The quantum dusty magnetosonic solitary wave in magnetized plasma. Phys. Plasmas 19, 013704.Google Scholar
Yaroshenko, V. V., Verheest, F., Thomas, H. M. & Morfill, G. E. 2009 The bohm sheath criterion in strongly coupled complex plasmas. New J. Phys. 11, 073013.Google Scholar