Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T10:34:36.906Z Has data issue: false hasContentIssue false

Nonlinear force-free configurations in cylindrical geometry

Published online by Cambridge University Press:  20 April 2020

Maxim Lyutikov*
Affiliation:
Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN47907-2036, USA
*
Email address for correspondence: [email protected]

Abstract

We find a new family of solutions for force-free magnetic structures in cylindrical geometry. These solutions have radial power-law dependence and are periodic but non-harmonic in the azimuthal direction; they generalize the vacuum $z$-independent potential fields to current-carrying configurations.

Type
Research Article
Copyright
© Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aly, J. J. 1994 Asymptotic formation of a current sheet in an indefinitely sheared force-free field: an analytical example. Astron. Astrophys. 288, 10121020.Google Scholar
Bellan, P. M. 2000 Spheromaks: A Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-Organization. World Scientific.CrossRefGoogle Scholar
Chandrasekhar, S. & Kendall, P. C. 1957 On force-free magnetic fields. Astrophys. J. 126, 457-+.CrossRefGoogle Scholar
Grad, H. 1967 Toroidal containment of a plasma. Phys. Fluids 10 (1), 137154.CrossRefGoogle Scholar
Lundquist, S. 1951 On the stability of magneto-hydrostatic fields. Phys. Rev. 83, 307311.CrossRefGoogle Scholar
Lynden-Bell, D. & Boily, C. 1994 Self-similar solutions up to flashpoint in highly wound magnetostatics. Mon. Not. R. Astron. Soc. 267, 146.CrossRefGoogle Scholar
Priest, E. & Forbes, T. 2000 Magnetic Reconnection. Cambridge University Press.CrossRefGoogle Scholar
Shafranov, V. D. 1966 Plasma equilibrium in a magnetic field. Rev. Plasma Phys. 2, 103-+.Google Scholar
Shibata, K. & Magara, T. 2011 Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8 (1), 6.CrossRefGoogle Scholar
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 11391141.CrossRefGoogle Scholar
Thompson, C., Lyutikov, M. & Kulkarni, S. R. 2002 Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574 (1), 332355.CrossRefGoogle Scholar
Woltier, L.1958 Proc. Natl Acad. Sci. USA 44, 489.Google Scholar