Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T06:10:38.086Z Has data issue: false hasContentIssue false

Nonlinear evolution of double layers and electron vortices in an unstable plasma diode

Published online by Cambridge University Press:  13 March 2009

Satoru Iizuka
Affiliation:
Research Institute for Energy Materials, Yokohama National University, Yokohama 240, Japan
Hiroshi Tanaca
Affiliation:
Research Institute for Energy Materials, Yokohama National University, Yokohama 240, Japan

Abstract

Nonlinear evolution of a large-amplitude relaxation oscillation in an unstable plasma diode is investigated by a computer simulation using a particle model. The oscillation is closely related to double-layer dynamics accompanied by a negative potential dip on the low-potential tail. A vortex is formed in the electron velocity phase space during the potential evolution, which causes a topological rearrangement of the phase space in the high-potential plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. E., Fang, M. T. C. & Fraser, D. A. 1971 Proc. Roy. Soc. A 322, 63.Google Scholar
Braithwaite, N. S. J. & Allen, J. E. 1981 Int. J. Electronics, 51, 637.CrossRefGoogle Scholar
Burger, P. 1965 J. Appl. Phys. 36, 1938.Google Scholar
Carlqvist, P. 1979 Wave Instabilities in Space Plasmas (ed. Palmadesso, P. J. and Papadopoulos, K.), p. 83. Reidel.CrossRefGoogle Scholar
Coakley, P. & Hershkowitz, N. 1979 Phys. Fluids. 22, 1171.CrossRefGoogle Scholar
DeGroot, J. S., Barnes, C., Walstead, A. E. & Buneman, O. 1974 Phys. Rev. Lett. 38, 109.Google Scholar
Enriques, L., Righetti, G. B., Magistbelli, F. & Boschi, A. 1965 Nuovo Cimento, 38, 26.Google Scholar
Fang, M. T. C., Fraser, D. A. & Allen, J. E. 1969 J. Phys. D, 2, 229.CrossRefGoogle Scholar
Geortz, C. K. & Joyce, G. 1975 Astrophys. Space Sci. 32, 165.CrossRefGoogle Scholar
Ilzuka, S., Michelsen, P., Rasmussen, J. J., Schrittwieser, R., Hatakeyama, R., Saeki, K. & Sato, N. 1981 J. Phys. E, 14, 1291.Google Scholar
Ilzuka, S., Michelsen, P., Rasmussen, J. J., Schrittwieser, R., Hatakeyama, R., Saeki, K. & Sato, N. 1982 Phya. Rev. Lett. 48, 145.Google Scholar
Iizuka, S. & Tanaca, H. 1984 Phys. Lett. 103 A, 57.CrossRefGoogle Scholar
Joyce, G. & Hubbard, R. F. 1978 J. Plasma Phys. 20, 391.Google Scholar
Leung, P., Wong, A. Y. & Quon, B. H. 1980 Phys. Fluids, 23, 992.Google Scholar
Luke, K. P. & Jamerson, F. E. 1961 J. Appl. Phys. 32, 321.CrossRefGoogle Scholar
Michelsen, P., Pécseli, H. L., Rasmussen, J. J. & Schrittwieser, R. 1979 Plasma Phys. 21, 61.CrossRefGoogle Scholar
Morse, R. L. & Nielson, C. W. 1969 Phys. Fluids, 12, 2418.CrossRefGoogle Scholar
Saeki, K., Michesen, P., Pécseli, H. L. & Rasmussen, J. J. 1979 Phys. Rev. Lett. 42, 501.CrossRefGoogle Scholar
Sato, N., Popa, G., Märk, E., Mravlag, E. & Schrittwieser, R. 1976 Phys. Fluids, 19, 70.Google Scholar
Sato, N., Hatakeyama, R., Iizuka, S., Mieno, T., Saeki, K., Rasmussen, J. J., Michelsen, P. & Schrittwieser, R. 1983 J. Phys. Soc. Japon, 52, 875.CrossRefGoogle Scholar
Sato, T. & Okuda, H. 1980 Phys. Rev. Lett. 44, 740.CrossRefGoogle Scholar
Schrittwieser, R. 1978 Phys. Lett. 65 A, 235.CrossRefGoogle Scholar
Singh, N. 1982 Plasma Phys. 24, 639.CrossRefGoogle Scholar
Singh, N. & Schunk, R. W. 1982 J. Geophys. Res. 87, 3561.CrossRefGoogle Scholar
Torvén, S. & Anderson, D. 1979 J. Phys. D, 12, 425.CrossRefGoogle Scholar