Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T07:24:55.276Z Has data issue: false hasContentIssue false

Nonlinear electrostatic solitary waves in electron–positron plasmas

Published online by Cambridge University Press:  19 February 2016

I. J. Lazarus*
Affiliation:
Department of Physics, Durban University of Technology, Durban 4001, South Africa
R. Bharuthram
Affiliation:
University of the Western Cape, Modderdam Road, Bellville 7530, South Africa
S. Moolla
Affiliation:
School of Physics, University of KwaZulu-Natal, Durban 4000, South Africa
S. V. Singh
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai 401206, India
G. S. Lakhina
Affiliation:
Indian Institute of Geomagnetism, Navi Mumbai 401206, India
*
Email address for correspondence: [email protected]

Abstract

The generation of nonlinear electrostatic solitary waves (ESWs) is explored in a magnetized four component two-temperature electron–positron plasma. Fluid theory is used to derive a set of nonlinear equations for the ESWs, which propagate obliquely to an external magnetic field. The electric field structures are examined for various plasma parameters and are shown to yield sinusoidal, sawtooth and bipolar waveforms. It is found that an increase in the densities of the electrons and positrons strengthen the nonlinearity while the periodicity and nonlinearity of the wave increases as the cool-to-hot temperature ratio increases. Our results could be useful in understanding nonlinear propagation of waves in astrophysical environments and related laboratory experiments.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asseo, E. & Riazuelo, A. 2000 Relativistic anisotropic pair plasmas. Mon. Not. R. Astron. Soc. 318, 9831004.CrossRefGoogle Scholar
Bharuthram, R. 1992 Arbitrary amplitude double layers in a multi-species electron–positron plasma. Astrophys. Space Sci. 189, 213222.Google Scholar
Bhattacharyya, R., Janaki, M. S. & Dasgupta, B. 2003 Relaxation in electron–positron plasma: a possibility. Phys. Lett. A 315, 120125(6).CrossRefGoogle Scholar
Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S., Delroy, G. T., Peria, W., Chaston, C. C., Temerin, M., Elphic, R., Strangeway, R. et al. 1998 FAST satellite observations of large-amplitude solitary wave structures. Geophys. Res. Lett. 25, 20412044.Google Scholar
Esfandyari-Kalejahi, A., Kourakis, Y. & Shukla, P. K. 2006 Oblique modulation of electrostatic modes and envelope excitations in pair-ion and electron–positron plasmas. Phys. Plasmas 13, 122310122318.CrossRefGoogle Scholar
Franz, J. R., Kintner, P. M. & Pickett, J. S. 1998 POLAR observations of coherent electric field structures. Geophys. Res. Lett. 25, 12771280.Google Scholar
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 869880.CrossRefGoogle Scholar
Greaves, R. G. & Surko, C. M. 1995 An electron–positron beam-plasma experiment. Phys. Rev. Lett. 75, 38463849.CrossRefGoogle ScholarPubMed
Hasegawa, A. 1975 Plasma Instabilities and Nonlinear Effects, p. 194. Springer.Google Scholar
Iwamoto, N. 1993 Collective modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 47, 604611.CrossRefGoogle ScholarPubMed
Kashiyama, K., Ioka, K. & Kawanaka, N. 2011 White dwarf pulsars as possible cosmic ray electron–positron factories. Phys. Rev. D 83, 023002023022.CrossRefGoogle Scholar
Kojima, H., Matsumoto, H., Miyatake, T., Nagano, I., Fujita, A., Frank, L. A., Mukai, T., Paterson, W. R., Saito, Y., Machida, S. et al. 1994 Relation between electrostatic solitary waves and hot plasma flow in the plasma sheet boundary layer: GEOTAIL observations. Geophys. Res. Lett. 21, 29192922.CrossRefGoogle Scholar
Kojima, H., Ohtsuka, K., Matsumoto, H., Omura, Y., Anderson, R. R., Saito, Y., Mukai, T., Kokubun, S. & Yamamoto, T. 1999 Plasma waves in slow-mode shocks observed by GEOTAIL spacescraft. Adv. Space Res. 24, 5154.CrossRefGoogle Scholar
Lazarus, I. J., Bharuthram, R. & Hellberg, M. A. 2008 Modified Korteweg–de Vries–Zakharov–Kuznetsov solitons in symmetric two-temperature electron–positron plasmas. J. Plasma Phys. 74, 519529.CrossRefGoogle Scholar
Lazarus, I. J., Bharuthram, R., Singh, S. V., Pillay, S. R. & Lakhina, G. S. 2012 Linear electrostatic waves in two temperature electron–positron plasmas. J. Plasma Phys. 78, 621628.CrossRefGoogle Scholar
Liu, Y. & Liu, S. Q. 2011 Nonlinear behavior of electromagnetic waves in ultra-relativistic electron–positron plasmas. Contrib. Plasma Phys. 51, 698706.CrossRefGoogle Scholar
Lu, G., Liu, Y., Wang, Y., Stenflo, L., Popel, S. I. & Yu, M. Y. 2010 Fully nonlinear electrostatic waves in electron–positron plasmas. J. Plasma Phys. 76, 267275.Google Scholar
Luo, Q. 1998 Plasma processes in pulsar magnetospheres and eclipsing binary pulsar systems. Braz. J. Phys. 28, 191202.CrossRefGoogle Scholar
Matsumoto, H., Kojima, H., Kasaba, Y., Miyake, T., Anderson, R. R. & Mukai, T. 1997 Plasma waves in the upstream and bow shock regions observed by GEOTAIL. Adv. Space Res. 20, 683693.CrossRefGoogle Scholar
Matsumoto, H., Kojima, H., Miyatake, T., Omura, Y., Okada, M., Nagano, I. & Tsutsui, M. 1994 Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 21, 29152918.CrossRefGoogle Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
Miller, H. R. & Witta, P. J. 1987 Active Galactic Nuclei, p. 202. Springer.Google Scholar
Mofiz, U. A. & Amin, M. R. 2013 Langmuir dark solitons in dense ultrarelativistic electron–positron gravito-plasma in pulsar magnetosphere. Astrophys. Space Sci. 345, 119124.Google Scholar
Mofiz, U. A. & Mamun, A. A. 1992 Spiky Langmuir solitons in a dense ultrarelativistic electron–positron plasma. Phys. Fluids B 4, 38063807.Google Scholar
Moolla, S., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2003 Non-linear high-frequency waves in the magnetosphere. Pramana J. Phys. 61, 12091214.CrossRefGoogle Scholar
Moolla, S., Bharuthram, R., Singh, S. V., Lakhina, G. S. & Reddy, R. V. 2007 An explanation for high-frequency broadband electrostatic noise in the Earth’s magnetosphere. J. Geophys. Res. 112, A07214p1-23.Google Scholar
Omura, Y., Kojima, H. & Matsumoto, H. 1994 Computer simulation of electrostatic solitary waves: a nonlinear model of broadband electrostatic noise. Geophys. Res. Lett. 21, 29232926.CrossRefGoogle Scholar
Piran, T. 2005 The physics of gamma-ray bursts. Rev. Mod. Phys. 76, 11431210.CrossRefGoogle Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1996 Numerical Receipes in Fortran 90 – ‘The Art of Parallel Scientific Computing’, vol. 2, pp. 702704, 731, 740, 1297, 1308. Cambridge University Press.Google Scholar
Reddy, R. V., Lakhina, G. S., Singh, N. & Bharuthram, R. 2002 Spiky parallel electrostatic ion cyclotron and ion acoustic waves. Nonlinear Process. Geophys. 9, 2529.Google Scholar
Stark, C. R., Diver, D. A., da Costa, A. A. & Laing, E. W. 2007 Nonlinear mode coupling in pair plasmas. Astron. Astrophys. 476, 1730.Google Scholar
Sturrock, P. A. 1971 A model of pulsars. Astrophys. J. 164, 529556.CrossRefGoogle Scholar
Temerin, M. A., Cerny, K., Lotko, W. & Mozer, F. S. 1982 Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 11751179.CrossRefGoogle Scholar
Verheest, F., Hellberg, M. A., Gray, G. J. & Mace, R. L. 1996 Electrostatic solitons in multispecies electron–positron plasmas. Astrophys. Space Sci. 239, 125139.CrossRefGoogle Scholar
Weise, J. & Melrose, D. B. 2002 One-photon pair production in pulsars: non-relativistic and relatrivistic regimes. Mon. Not. R. Astron. Soc. 329, 115125.Google Scholar
Zank, G. P. & Greaves, R. G. 1995 Linear and nonlinear modes in nonrelativistic electron–positron plasmas. Phys. Rev. E 51, 60796090.CrossRefGoogle ScholarPubMed