Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T12:20:54.767Z Has data issue: false hasContentIssue false

Nonlinear aspects of collective, electromagnetic interactions in magnetized plasmas with anisotropic protons and isotropic alpha particles

Published online by Cambridge University Press:  13 March 2009

S. Cuperman
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Israel
L. Ofman
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Israel
M. Dryer
Affiliation:
Space Environment Laboratory, NOAA, Boulder, Colorado, U.S.A.

Abstract

We use computer simulation experiments to investigate the nonlinear behaviour of plasmas with a mixture of anisotropic protons and isotropie alpha particles, embedded in a static magnetic field. Specifically, we study the linearly predicted ‘stop-band’ for the propagation of the proton-produced electromagnetic ion cyclotron waves in conjunction with the energization of the heavier ions by the same waves. For this, three cases are considered: (1) proton + electron plasma; (2) proton + electron + cold alpha particle plasma, and (3) proton + electron + warm alpha particle plasma. Among the main results obtained we mention the following, (a) In the presence of significant relative He2+ concentrations (either cold or warm) all proton-produced left-polarized waves having frequencies above the alpha-particle gyrofrequency are practically suppressed, during the entire nonlinear evolution of the system, indicating that particle–wave–particle interactions are confined to the low-frequency branch of the waves, (b) The ‘remnant’ wave energy, i.e. that part of the wave energy not transferred to the particles, decreases significantly when going from case 1 to case 3. (c) Nevertheless, in all three cases, the initial proton thermal anisotropy relaxes to the same quasi-equilibrium value (≃ 1·5). (d) The cold alpha particles in case 2 are strongly heated by their non-resonant interaction with the proton-produced ion cyclotron electromagnetic waves, (e) In contrast, the initially warm isotropic alpha particles in case 3 are heated by resonant interaction with the proton-produced waves, resulting in an increase in the perpendicular energy and a decrease in the parallel energy. The physical processes involved in the collisionless interaction of these mixed protons and heavier ions (alpha particles) are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berchem, J. & Gendrin, R. 1985 J. Geophys. Res. 90, 10945.CrossRefGoogle Scholar
Brice, N. M. & Lucas, C. 1971 J. Geophys. Res. 76, 900.CrossRefGoogle Scholar
Byers, J. A., Cohen, B. I., Condit, W. C. & Hanson, J. D. 1978 J. Comp. Phys. 27, 363.CrossRefGoogle Scholar
Cornwall, J. M. & Schulz, M. 1971 J. Geophys. Res. 76, 7791.CrossRefGoogle Scholar
Cuperman, S. 1981 Rev. Geophys. Space Phys. 19, 307.CrossRefGoogle Scholar
Cuperman, S., Gomberoff, L. & Sternlieb, A. 1975 a J. Plasma Phys. 13, 259.CrossRefGoogle Scholar
Cuperman, S., Gomberoff, L. & Sternlieb, A. 1975 b J. Plasma Phys. 14, 195.CrossRefGoogle Scholar
Cuperman, S., Gomberoff, L. & Sternlieb, A. 1975 c J. Geophys. Res. 80, 4643.CrossRefGoogle Scholar
Cuperman, S., Sternlieb, A. & Williams, D. J. 1976 J. Plasma Phys. 16, 57.CrossRefGoogle Scholar
Davidson, R. C. & Ogden, J. M. 1975 Phys. Fluids, 18, 1045.CrossRefGoogle Scholar
Formisano, V., Plamiotto, F. & Moreno, G. 1970 Solar Phys. 15, 479.CrossRefGoogle Scholar
Forslund, D. W., Lindman, E. K., Mitchell, R. W. & Morse, R. L. 1972 Report LA-DC-72–721–1972, Los Alamos Scientific Laboratory.Google Scholar
Fraser, B. J. 1982 Planet. Space Sci. 30, 1229.CrossRefGoogle Scholar
Gendrin, R. 1975 Space Sci. Rev. 18, 145.CrossRefGoogle Scholar
Gendrin, R. 1981 Rev. Geophys. Space Phys. 19, 171.CrossRefGoogle Scholar
Gendrin, R. & Roux, A. 1980 J. Geophys. Res. 85, 4577.CrossRefGoogle Scholar
Gendrin, R. & Ashour-Abdalla, M., Omura, Y. & Quest, K. 1984 J. Geophys. Res. 9119.CrossRefGoogle Scholar
Gomberoff, L. & Cuperman, S. 1977 J. Plasma Phys. 18, 91.CrossRefGoogle Scholar
Isenberg, P. A. 1984 a J. Geophys. Res. 89, 2133.CrossRefGoogle Scholar
Isenberg, P. A. 1984 b J. Geophys. Res. 89, 6613.CrossRefGoogle Scholar
Märk, E. 1974 J. Geophys. Res. 79, 3218.CrossRefGoogle Scholar
Marsch, E. K., Muhlhauser, H., Rosenbauer, H., Schwenn, R. & Neubauer, F. M. 1982 J. Geophys. Res. 87, 35.CrossRefGoogle Scholar
Mauk, B. H. 1982 Geophys. Res. Lett. 9, 1163.CrossRefGoogle Scholar
Mizera, P. F. et al. 1981 J. Geophys. Res. 86, 2329.CrossRefGoogle Scholar
Morse, R. L. & Nielsen, C. W. 1971 Phys. Fluids, 14, 830.CrossRefGoogle Scholar
Neugebauer, M. 1981 Fundam. Cosmic Phys. 7, 131.Google Scholar
Ogden, J. M. 1977 Ph.D. Dissertation, University of Maryland.Google Scholar
Omura, Y., Ashour-Abdalla, M., Gendrin, R. & Quest, K. 1985 J. Geophys. Res. 90, 8281.CrossRefGoogle Scholar
Oscarsson, T. & André, M. 1986 Report 080, Kiruna Geophysical Institute.Google Scholar
Robbins, D. E., Hundhausen, A. J. & Bame, S. J. 1970 J. Geophys. Res. 75, 1178.CrossRefGoogle Scholar
Roux, A., Cornilleau-Wehrlin, N. & Ranch, J. L. 1984 J. Geophys. Res. 89, 2267.CrossRefGoogle Scholar
Scharer, J. E. 1967 Phys. Fluids, 10, 652.CrossRefGoogle Scholar
Stix, T. H. 1962 The Theory of Plasma Waves. McGraw-Hill.Google Scholar
Tanaka, M. 1985 J. Geophys. Res. 90, 6459.CrossRefGoogle Scholar
Young, D. T., Perrault, S., Roux, A., De Villedary, C., Gendrin, R., Korth, A., Kremser, G. & Jones, D. 1981 J. Geophys. Res. 86, 6755.CrossRefGoogle Scholar