Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T00:27:32.507Z Has data issue: false hasContentIssue false

New terms in MHD equations and their implications for the inertial confinement fusion concept

Published online by Cambridge University Press:  13 March 2009

S. K. H. Auluck
Affiliation:
Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India

Abstract

The MHD equations are rederived without neglecting the electron inertia and new terms are obtained. The revised equations predict that strong magnetic fields are spontaneously generated even in an ideally symmetric ICF implosion in contrast to the conventional theory where an ideal ICF implosion is considered to be free of magnetic fields. The dynamics of the implosion is found to be governed by the space-time structure of the magnetic field. Departures from neutrality are taken into account and an explicit equation is obtained for the evolution of the charge density. The complexity of the implosion problem is illustrated with reference to cylindrical and spherical geometries. The existence of this effect has been verified in the case of a Z-pinch. Experiments can be devised to detect it in existing ICF installations. It is suggested that scientific breakeven may be achieved using existing installations if the targets are optimized in accordance with the present theory.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atwood, D. T. 1978 J. Quant. Electron. 14, 909.CrossRefGoogle Scholar
Auluck, S. K. H. 1986 a J. Plasma Phys. 35, 295.CrossRefGoogle Scholar
Auluck, S. K. H. 1986 b J. Plasma Phys. 35, 311.CrossRefGoogle Scholar
Auluck, S. K. H., Kulkarni, L. V. & Srinivasan, M. 1985 Proceedings of 4th International Workshop on Plasma Focus and Z Pinch Research, Warsaw.Google Scholar
Briand, J., Adrian, V., El Tamer, M., Gomes, A., Quemener, Y., Dinguirard, J. P. & Kieffer, J. C. 1985 Phys. Rev. Lett. 54, 38.CrossRefGoogle Scholar
Chen, F. F. 1974 Introduction to Plasma Physics. Plenum.Google Scholar
Chakraborty, B., Khan, M. & Bhattacharya, B. 1986 J. App. Phys. (In press.)Google Scholar
Christiansen, J. P., Ashby, D. E. T. F. & Roberts, K. V. 1974 Comp. Phy. Com. 7, 271.CrossRefGoogle Scholar
Coppi, B. 1965 Phys. Fluids, 8, 273.CrossRefGoogle Scholar
Dawson, J. M., Furth, H. P. & Tenney, F. H. 1971 Phys. Rev. Lett. 26, 1156.CrossRefGoogle Scholar
Emery, M. H., Gardener, J. H. & Boris, J. P. 1984 Report IAEA-CN-44, B-III-3, p. 129.Google Scholar
Hasegawa, A., Daido, H., Fujita, M., Mima, K., Murakami, M., Nakai, S., Nishihara, K., Terai, K. & Yamanaka, C. 1986 Phys. Rev. Lett. 56, 139.CrossRefGoogle Scholar
Hora, H. 1985 Laser and Particle Beams, 3, 59.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. 1984 Phys. Rev. Lett. 53, 1650.CrossRefGoogle Scholar
Kidder, R. E. 1976 Nucl. Fusion, 16, 3, 405.CrossRefGoogle Scholar
Kidder, R. E. 1979 Nucl. Fusion, 19, 223.CrossRefGoogle Scholar
Kirkpatrick, R. C. 1979 Nucl. Fusion, 19, 69.CrossRefGoogle Scholar
Kirkpatrick, R. C. 1982 Nuclear Technology/Fusion, 2, 707.Google Scholar
Kirkpatrick, R. C. & Wheeler, J. A. 1981 Nucl. Fusion, 21, 389.Google Scholar
Korobkin, V. V. & Serov, R. V. 1966 JETP Lett. 4, 70.Google Scholar
Lehnert, B. 1959 Nuovo Cimento Suppl., Series X, 13, 59.CrossRefGoogle Scholar
Lehnert, B. 1961 Arkiv. f. Fysik, 18, 251.Google Scholar
Lehnert, B. 1968 Arkiv. f. Fysik, 38, 499.Google Scholar
Lehnert, B. 1985 Comm. Plasma Phys. Cont. Fusion, 9, 91.Google Scholar
Lindemuth, I. R. & Kirkpatrick, R. C. 1983 Nucl. Fusion, 23, 263.CrossRefGoogle Scholar
Longmire, C. L. 1963 Elementary Plasma Physics. Wiley.Google Scholar
Manheimer, W. M. 1977 Phys. Fluids, 20, 265.CrossRefGoogle Scholar
Max, C. E., Manheimer, W. M. & Thomson, J. J. 1978 Phys. Fluids, 21, 728.CrossRefGoogle Scholar
Mead, W. C. et al. 1984 Phys. Fluids, 27, 1301.CrossRefGoogle Scholar
Mima, K., Nishihara, K., Yabe, T., Tsuji, R., Ido, S., Takabe, H., Nakai, S. & Yamanaka, C. 1984. Report IAEA-CN-44/B-III-1.Google Scholar
Morse, P. M. & Feshbach, H. 1963 Methods of Mathematical Physics. McGraw-Hill.Google Scholar
Nishiguchi, A., Yabe, T., Haines, M. G., Psimopoulos, M. & Takewaki, H. 1984 Phys. Rev. Lett. 53, 262.CrossRefGoogle Scholar
Pearlman, J. S. & Anthes, J. P. 1975 App. Phys. Lett. 27, 581.CrossRefGoogle Scholar
Rager, J. P. 1981 Proceedings of 2nd International Workshop on Plasma Focus and Z-Pinch Research, Moscow, p. 47.Google Scholar
Ramani, A. & Laval, G. 1978 Phys. Fluids, 21, 980.CrossRefGoogle Scholar
Stamper, J. A., Papadopoulos, K., Sudan, R. N., Dean, S. O., McLean, E. A. & Dawson, J. M. 1971 Phys. Rev. Lett. 26, 1012.CrossRefGoogle Scholar
Stamper, J. A. & Tidman, D. A. 1973 Phys. Fluids, 16, 2024.CrossRefGoogle Scholar
Steiger, A. D. & Woods, C. H. 1972 Phys. Rev. A, 5, 1467.CrossRefGoogle Scholar
Sugiaki, K. 1985 Jap. J. Appl. Phys. 24, 328.CrossRefGoogle Scholar
Tidman, D. A. & Shanny, R. A. 1974 Phys. Fluids, 17, 1207.CrossRefGoogle Scholar
Thomson, J. J., Max, C. E. & Eastabrook, K. 1975 Phys. Rev. Lett. 35, 663.CrossRefGoogle Scholar
Young, F. C., Whitlock, R. R., Decoste, R., Ripin, B. H., Nagel, D. J., Stamper, J. A., McMahon, J. M. & Bodner, S. E. 1977 Appl. Phys. Lett. 30, 45.CrossRefGoogle Scholar
Zimmerman, G. B. 1973 Report UCRL-74811.Google Scholar