Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T00:33:44.942Z Has data issue: false hasContentIssue false

A new decay channel for compressional Alfvén waves in plasmas

Published online by Cambridge University Press:  01 February 2008

G. BRODIN
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, ([email protected])
P. K. SHUKLA
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, ([email protected]) Ruhr-Universität Bochum, Fakultät Für Physik und Astronomie, Theoretische Physik IV D-44780 Bochum, Germany
L. STENFLO
Affiliation:
Department of Physics, Umeå University, SE-901 87 Umeå, Sweden, ([email protected])

Abstract

We present a new efficient wave decay channel involving nonlinear interactions between a compressional Alfvén wave, a kinetic Alfvén wave, and a modified ion sound wave in a magnetized plasma. It is found that the wave coupling strength of the ideal magnetohydrodynamic (MHD) theory is much increased when the effects due to the Hall current are included in a Hall–MHD description of wave–wave interactions. In particular, with a compressional Alfvén pump wave well described by the ideal MHD theory, we find that the growth rate is very high when the decay products have wavelengths of the order of the ion thermal gyroradius or shorter, in which case they must be described by the Hall–MHD equations. The significance of our results to the heating of space and laboratory plasmas as well as for the Solar corona and interstellar media are highlighted.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Cramer, N. F. 2001 The Physics of Alfvén Waves. Berlin: Wiley-VCH.CrossRefGoogle Scholar
[2]Cho, J. Y. and Lazarian, A. 2002 Phys. Rev. Lett. 88, 245001.CrossRefGoogle Scholar
[3]Yan, H. R. and Lazarian, A. 2002 Phys. Rev. Lett. 89, 281102.CrossRefGoogle Scholar
[4]Matthaeus, W. H., Mullan, D. J., Dmitruk, D., Milano, L. and Oughton, S. 2003 Nonlinear Proc. Geophys. 10, 93.CrossRefGoogle Scholar
[5]Sundkvist, D. et al. , 2005 Nature (London) 436, 825.CrossRefGoogle Scholar
[6]Carter, T. A., Brugman, B., Pribyl, P. and Lybarger, W. 2006 Phys. Rev. Lett. 96, 155001.CrossRefGoogle Scholar
Brugman, B., Carter, T. and Auerbach, D. 2006 Bull. Amer. Phys. Soc. 51, CP1, 87.Google Scholar
[7]Shukla, P. K. and Stenflo, L. 1999 Nonlinear MHD Waves and Turbulence (ed. Passot, T. and Sulem, P.-L.). Berlin: Springer, pp. 130.Google Scholar
[8]Sulem, C. and Sulem, P.-L. 1999 The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse. Berlin: Springer.Google Scholar
[9]Galinsky, V. L. and Shevchenko, V. I. 2000 Phys. Rev. Lett. 85, 90.CrossRefGoogle Scholar
[10]Shukla, P. K. and Stenflo, L. 2005 Phys. Rev. Lett. 95, 269501.CrossRefGoogle Scholar
[11]Wang, C. B., Wu, C. S. and Yoon, P. H. 2006 Phys. Rev. Lett. 96, 125001.CrossRefGoogle Scholar
[12]Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory. New York: Benjamin.Google Scholar
[13]Brodin, G. and Stenflo, L. 1990 Contrib. Plasma Phys. 30, 413.CrossRefGoogle Scholar
[14]Stenflo, L. 1970 J. Plasma Phys. 4, 585.CrossRefGoogle Scholar
[15]Lashmore-Davies, C. N. and Ong, R. S. B. 1974 Phys. Rev. Lett. 32, 1172.CrossRefGoogle Scholar
[16]Hasegawa, A. and Chen, L. 1976 Phys. Rev. Lett. 36, 1362.CrossRefGoogle Scholar
[17]Hasegawa, A. and Uberoi, C. 1982 The Alfvén Wave (DOE Review Series–Advances in Fusion Science and Engineering) (U.S. Department of Energy, Washington D.C.).Google Scholar
[18]Brodin, G., Stenflo, L. and Shukla, P. K. 2006 Solar. Phys. 236, 285.CrossRefGoogle Scholar
[19]Voitenko, Y. M. 1998 J. Plasma Phys. 60, 497.CrossRefGoogle Scholar
[20]Carter, T. A. 2006 Phys. Plasmas, 13, 010701.CrossRefGoogle Scholar
[21]Brodin, G. and Stenflo, L. 1988 J. Plasma Phys. 39, 277.CrossRefGoogle Scholar