Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T15:08:18.306Z Has data issue: false hasContentIssue false

The neighbouring vibrating ‘multiple water-bag’ plasma potential and related aspects

Published online by Cambridge University Press:  13 March 2009

Lim Chee-seng
Affiliation:
Department of Mathematics, National University of Singapore, Singapore 0511, Republic of Singapore

Extract

The spatial factor Φ(x) of the vibratory-state MWB (‘multiple water-bag’) plasma potential Φ = Φ(x) exp (- iwt) in the vicinity of its generating electric charge rgr;(x) exp (- iwt) is proved to be the Poisson potential U(x) of ρ plus an error function ξ(x) whose magnitude can be rendered as small as desired, in relation to │Φ(x)│, by locating the recording point sufficiently close to the charge. How close this should be is independent of ρ, but depends quantitatively on the MWB model and the frequency ω, and qualitatively on whether the frequency of the vibrations is greater or less than the plasma frequency. A high vibration frequency reinforces accuracy in the Poissonian approximation. The question as to whether Φ is weaker or stronger than U(x) is tacked. Shielding efficiency is explored in the vibratory state.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berk, H. L. & BooK, D. L. 1969 Phys. Fluids 12, 649.CrossRefGoogle Scholar
Berk, H. L. & Roberts, K. V. 1967 Phys. Fluids 10, 1595.CrossRefGoogle Scholar
Berk, H. L. & Roberts, K. V. 1970 Methods of Computational Physics, vol. 9, p. 87. Academic.Google Scholar
Bertrand, P., Doremus, J. P., Baumann, G. & Feix, M. R. 1972 Phys. Fluids 15, 1275.CrossRefGoogle Scholar
Bertrand, P., Gros, M. & Baumann, G. 1976 Phys. Fluids 19, 1183.CrossRefGoogle Scholar
Bloomberg, H. W. & Berk, H. L. 1973 J. Plasma Phys. 9, 235.CrossRefGoogle Scholar
Buzzi, J. M. 1971 J. Phys. Paris 32 (C5B), 102.Google Scholar
Buzzi, J. M. 1974 Phys. Fluids 17, 716.CrossRefGoogle Scholar
Chasseriaux, J. M. & Odero, D. 1973 J. Plasma Phys. 10, 265.CrossRefGoogle Scholar
Chee-Seng, L. 1989 Proc. R. Soc. Lond. A 421, 109.Google Scholar
Chee-Seng, L. 1990 J. Plasma Phys. 44, 377.CrossRefGoogle Scholar
Mourgues, G., Feix, M. R. & Fijalkow, E. 1977 Plasma Phys. 19, 549.CrossRefGoogle Scholar
Mourgues, G., Fijalkow, E. & Feix, M. R. 1980 Plasma Phys. 22, 367.Google Scholar
Navet, M. & Bertrand, P. 1971 Phys. Lett. 34A, 117.CrossRefGoogle Scholar
Noyer, M. L., Navet, M. & Feix, M. R. 1975 J. Plasma Phys. 13, 63.CrossRefGoogle Scholar
Roberts, K. V. & Berk, H. L. 1967 Phys. Rev. Lett. 19, 297.CrossRefGoogle Scholar
Rowlands, G. 1969 Phys. Lett. 30A, 408.CrossRefGoogle Scholar
Singh, N. 1978 Radio Sci. 13, 625.CrossRefGoogle Scholar
Trotignon, J. G. & Feix, M. R. 1977 Radio Sci. 12, 1035.CrossRefGoogle Scholar