Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T00:46:01.081Z Has data issue: false hasContentIssue false

Mutual influence between two spherical conducting grids in a warm isotropic plasma

Published online by Cambridge University Press:  13 March 2009

J. M. Chasseriaux
Affiliation:
Groupe de Recherches lonosphériques C.N.R.S., Avenue de Neptune, 94 St Maur, France
D. Odero
Affiliation:
Groupe de Recherches lonosphériques C.N.R.S., Avenue de Neptune, 94 St Maur, France

Abstract

The multiple water-bag model can be used to describe a uniform warm plasma as accurately as one wishes. Moreover, it makes boundary-value problems in such a plasma tractable. As a special case, the problems of the influence of a point charge on a spherical grid and of the mutual influence between two spherical grids are solved. From these results, the self-impedance of a double-sphere dipole antenna is deduced. If the spheres are widely separated it exhibits a resonance at the plasma frequency, whereas if the spheres are close there is an anti-resonance at this frequency. The mutual impedance of a quadrupole probe comprising two double-sphere antennae is also studied, and is found, usually, to be not very sensitive to the finite radius of the spheres. For determining the electron temperature of the plasma, this last device seems better than a double-sphere antenna alone.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beghin, C. 1970 C. r. hebd. Séanc. Acad. Sci., Paris 270, 431.Google Scholar
Bertrand, P. & Feix, M. R. 1969 Phys. Lett. 28 A, 68.CrossRefGoogle Scholar
Buckley, R. 1968 J. Plasma Phys. 2, 339.CrossRefGoogle Scholar
Chasseriaux, J. M. 1972 Plasma Phys. 14, 763.CrossRefGoogle Scholar
Chasseriaux, J. M., Debrie, R. & Renard, C. 1972 J. Plasma Phys. 8, 231.CrossRefGoogle Scholar
De, Packh D. C. 1962 J. Electronics and Control 13, 417.Google Scholar
Derfler, H. & Simonen, T. C. 1969 Phys. Fluids. 12, 269.CrossRefGoogle Scholar
Fejer, J. A. 1964 Radio Sci. 68D, 1171.Google Scholar
Fried, B. D. & Comte, S. D. 1961 The Plasma Dispersion Function. Academic.Google Scholar
Grard, R. J. L. & Tunaley, J. K. E. 1968 Ann. Geophys. 24, 1.Google Scholar
Hall, T. A. & Landauer, G. 1971 Radio Sci. 6, 967.CrossRefGoogle Scholar
Navet, M. & Bertrand, P. 1971 Phys. Letters 34A, 117.CrossRefGoogle Scholar
Navet, M., Bertrand, P., Feix, M. R., Rooy, N. & Storey, L. R. O. 1971 J. de Physique 32 C5 b, 189.Google Scholar
Rooy, B., Feix, M. R. & Storey, L. R. O. 1972 Plasma Phys. 14, 275.CrossRefGoogle Scholar
Rowlands, G. 1969 Phys. Lett. 30A, 408.CrossRefGoogle Scholar
Schiff, M. L. & Fejer, J. A. 1970 Radio Sci. 5, 811.CrossRefGoogle Scholar
Simonen, T. C. 1970 Plasma Waves in Space and in the Laboratory (ed. Thomas, J. O. and Landmark, B. J.), vol. 2, p. 285. Edinburgh University Press.Google Scholar
Smythe, W. R. 1968 Static and Dynamic Electricity. McGraw-Hill.Google Scholar
Storey, L. R. O. 1965 Onde elec. 45, 1427.Google Scholar
Storey, L. R. O., Meyer, P. & Aubry, M. 1969 Plasma Waves in Space and in the Laboratory (ed. Thomas, J. O. and Landmark, B. J.), vol. 1, p. 303. Edinburgh University Press.Google Scholar