Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T04:15:49.218Z Has data issue: false hasContentIssue false

Multi-species kinetic generalization of the Appleton–Hartree dispersion formula

Published online by Cambridge University Press:  13 March 2009

A. J. M. Garrett
Affiliation:
Cavendish Laboratory, Madingley Road, University of CambridgeCB3 OHE

Abstract

This paper calculates, on a kinetic basis, the dispersion relation and field polarization for waves propagating linearly through a homogeneous magnetoplasma when thermal velocities are far less than the phase velocity. Approximations are brought in only as necessary and their physical significance explained. The result is an improved derivation of the Sen–Wyller generalization of the Appleton–Hartree formula for velocity-dependent collision frequency. Further generalization to several charged species is made, and the dispersion relation is also considered in terms of the angle between the ambient magnetic field and the group (rather than phase) propagation direction. Special case reduction to the Appleton-Hartree formula is confirmed. Complications concerning the limit of weak spatial dispersion are discussed. The analysis is restricted to weakly ionized plasmas in which the charge to neutral particle mass ratios are small, collisions are weak, and the wave vector is predominantly real.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Appleton, E. V. 1932 J. Inst. Elec. Engrs. 71, 642.Google Scholar
Booker, H. G. 1984 Cold Plasma Waves. Nijhoff.CrossRefGoogle Scholar
Budden, K. G. 1961 Radio Waves in the Ionosphere (2nd ed., provisional title The Propagation of Radio Waves, in press). Cambridge University Press.Google Scholar
Budden, K. G. 1965 J. Res. NBS (Radio Sci.) 69 D, 191.Google Scholar
Budden, K. G. & Daniell, G. J. 1965 J. Atmos. Terr. Phys. 27, 395.Google Scholar
Budden, K. G. & Stott, G. F. 1980 J. Atmos. Terr. Phys. 42, 791.Google Scholar
Cerisier, J. C. 1974 ELF-VLF Radio Wave Propagation (ed. J. Holtet). NATO Advanced Study Series C, Reidel.Google Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas. Addison-Wesley.Google Scholar
De Groot, S. R. 1969 Studies in Statistical Mechanics Vol. IV: The Maxwell Equations. North-Holland.Google Scholar
Dingle, R. B., Arndt, D. & Roy, S. K. 1956/1957 Appl. Sci. Res. 6 B, 155.CrossRefGoogle Scholar
Garrett, A. J. M. 1982 J. Plasma Phys. 28, 233.CrossRefGoogle Scholar
Ginzburg, V. L. 1970 The Propagation of Electromagnetic Waves in Plasmas, (2nd ed.) Pergamon.Google Scholar
Gurevich, A. V. 1956 Soviet Phys. JETP, 3, 895.Google Scholar
Hara, E. H. 1963 J. Geophys. Res. 68, 4388.Google Scholar
Hartree, D. R. 1929 Proc. Cam. Phil. Soc. 25, 47.Google Scholar
Herring, R. N. 1984 Ph.D. thesis, University of Cambridge.Google Scholar
Huang, X.-Y. 1980 Acta Physica Sinica, 23, 139.Google Scholar
Jancel, R. & Kahan, T. 1954 Nuovo Cimento, 12, 573.Google Scholar
Johnston, T. W. 1966 J. Math. Phys. 7, 1453.Google Scholar
Keller, B. K. & Zumino, B. 1959 J. Chem. Phys. 30, 1351.Google Scholar
Lassen, H. 1927 Elektr. Nachr. Techn. 8, 324.Google Scholar
Nagata, M. 1983 J. Plasma Phys. 30, 371.CrossRefGoogle Scholar
Ramana, K. V. V., Madhusudhana Rao, D. N. & Jaganmohan Rao, B. 1979 Radio Sci. 14, 1157.Google Scholar
Ratcliffe, J. A. 1959 The Magneto-ionic Theory. Cambridge University Press.Google Scholar
Sen, H. K. & Wyller, A. A. 1960 J. Geophys. Res. 65, 3931.Google Scholar
Stott, G. F. 1983 J. Atmos. Terr. Phys. 45, 219.CrossRefGoogle Scholar
Willson, A. J. 1957 Ph.D. thesis, University of Cambridge.Google Scholar