Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T14:03:09.233Z Has data issue: false hasContentIssue false

Multiscale magnetic field structures in an expanding elongated plasma cloud with hot electrons subject to an external magnetic field

Published online by Cambridge University Press:  31 May 2022

M.A. Garasev
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
A.A. Nechaev
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
A.N. Stepanov
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
V.V. Kocharovsky
Affiliation:
Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
Vl.V. Kocharovsky*
Affiliation:
Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
*
Email address for correspondence: [email protected]

Abstract

We carry out three-dimensional and two-dimensional particle-in-cell simulations of the expansion of a magnetized plasma that initially uniformly fills a half-space and contains a semicylindrical region of heated electrons elongated along the surface of the plasma boundary. This geometry is related, for instance, to ablation of a plane target by a femtosecond laser beam under quasi-cylindrical focusing. We find that a decay of the inhomogeneous plasma–vacuum discontinuity is strongly affected by an external magnetic field parallel to its boundary. We observe various transient phenomena, including an anisotropic scattering of electrons and an accompanying Weibel instability, and reveal various spatial structures of the arising magnetic field and current, including multiple flying-apart filaments of a Z-pinch type and slowly evolving current sheets with different orientations. The magnitude of the self-generated magnetic field can be of the order of, or significantly exceed that of, the external one. Such phenomena are expected in the laser and cosmic plasmas, including the explosive processes in the planetary magnetospheres and stellar coronal arches.

Type
Letter
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albertazzi, B., Chen, S.N., Antici, P., Böker, J., Borghesi, M., Breil, J., Dervieux, V., Feugeas, J.L., Lancia, L., Nakatsutsumi, M., et al. 2015 Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation. Phys. Plasmas 22 (12), 123108.CrossRefGoogle Scholar
Arber, T.D., Bennett, K., Brady, C.S., Lawrence-Douglas, A., Ramsay, M.G., Sircombe, N.J., Gillies, P., Evans, R.G., Schmitz, H., Bell, A.R., et al. 2015 Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57 (11), 113001.CrossRefGoogle Scholar
Balogh, A., Bykov, A., Eastwood, J. & Kaastra, J. 2018 Multi-scale Structure Formation and Dynamics in Cosmic Plasmas. Springer.Google Scholar
Borodachev, L.V., Garasev, M.A., Kolomiets, D.O., Kocharovsky, V.V., Martyanov, V.Y. & Nechaev, A.A. 2017 Dynamics of a self-consistent magnetic field and diffusive scattering of ions in a plasma with strong thermal anisotropy. Radiophys. Quant. El. 59 (12), 991999.CrossRefGoogle Scholar
Bret, A. 2009 Weibel, two-stream, filamentation, oblique, bell, Buneman…which one grows faster? Astrophys. J. 699 (2), 9901003.CrossRefGoogle Scholar
Chang, P., Spitkovsky, A. & Arons, J. 2008 Long-term evolution of magnetic turbulence in relativistic collisionless shocks: electron-positron plasmas. Astrophys. J. 674 (1), 378387.CrossRefGoogle Scholar
Davidson, R.C. 1989Kinetic waves and instabilities in a uniform plasma. In Basic Plasma Physics: Selected Chapters from the Handbook of Plasma Physics, vol. 1 and 2 (ed. A.A. Galeev & R.N. Sudan), p. 229. North-Holland.Google Scholar
DeForest, C.E., Howard, R.A., Velli, M., Viall, N. & Vourlidas, A. 2018 The highly structured outer solar corona. Astrophys. J. 862 (1), 18.CrossRefGoogle Scholar
Dieckmann, M.E. 2009 The filamentation instability driven by warm electron beams: statistics and electric field generation. Plasma Phys. Control. Fusion 51 (12), 124042.CrossRefGoogle Scholar
Dieckmann, M.E., Moreno, Q., Doria, D., Romagnani, L., Sarri, G., Folini, D., Walder, R., Bret, A., d'Humières, E. & Borghesi, M. 2018 Expansion of a radially symmetric blast shell into a uniformly magnetized plasma. Phys. Plasmas 25 (5), 052108.CrossRefGoogle Scholar
Dudık, J., Dzifčáková, E., Meyer-Vernet, N., Zanna, G.D., Young, P.R., Giunta, A., Sylwester, B., Sylwester, J., Oka, M., Mason, H.E., et al. 2017 Nonequilibrium processes in the solar corona, transition region, flares, and solar wind (invited review). Solar Phys. 292 (8).CrossRefGoogle Scholar
Fox, W., Matteucci, J., Moissard, C., Schaeffer, D.B., Bhattacharjee, A., Germaschewski, K. & Hu, S.X. 2018 Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas. Phys. Plasmas 25 (10), 102106.CrossRefGoogle Scholar
Garasev, M. & Derishev, E. 2016 Impact of continuous particle injection on generation and decay of the magnetic field in collisionless shocks. Mon. Not. R. Astron. Soc. 461 (1), 641646.CrossRefGoogle Scholar
Göde, S., Rödel, C., Zeil, K., Mishra, R., Gauthier, M., Brack, F.-E., Kluge, T., MacDonald, M., Metzkes, J., Obst, L., et al. 2017 Relativistic electron streaming instabilities modulate proton beams accelerated in laser-plasma interactions. Phys. Rev. Lett. 118 (19), 194801.CrossRefGoogle ScholarPubMed
Gruzinov, A. 2001 Gamma-ray burst phenomenology, shock dynamo, and the first magnetic fields. Astrophys. J. 563 (1), L15L18.CrossRefGoogle Scholar
Huang, L.G., Takabe, H. & Cowan, T.E. 2019 Maximizing magnetic field generation in high power laser–solid interactions. High Power Laser Sci. Engng 7, E22.CrossRefGoogle Scholar
Huntington, C.M., Fiuza, F., Ross, J.S., Zylstra, A.B., Drake, R.P., Froula, D.H., Gregori, G., Kugland, N.L., Kuranz, C.C., Levy, M.C., et al. 2015 Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nat. Phys. 11 (2), 173176.CrossRefGoogle Scholar
Kelley, M.C. 2009 The Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press.Google Scholar
Kocharovsky, V.V., Kocharovsky, V.V., Martyanov, V.Y. & Tarasov, S.V. 2016 Analytical theory of self-consistent current structures in a collisionless plasma. Phys.-Usp. 59 (12), 11651210.CrossRefGoogle Scholar
Kolodner, P. & Yablonovitch, E. 1979 Two-dimensional distribution of self-generated magnetic fields near the laser-plasma resonant-interaction region. Phys. Rev. Lett. 43 (19), 14021403.CrossRefGoogle Scholar
Lazar, M., López, R., Shaaban, S.M., Poedts, S., Yoon, P.H. & Fichtner, H. 2022 Temperature anisotropy instabilities stimulated by the solar wind suprathermal populations. Front. Astron. Space Sci. 8.CrossRefGoogle Scholar
Lyubarsky, Y. & Eichler, D. 2006 Are gamma-ray burst shocks mediated by the Weibel instability? Astrophys. J. 647 (2), 12501254.CrossRefGoogle Scholar
Medvedev, M.V. & Loeb, A. 1999 Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526 (2), 697706.CrossRefGoogle Scholar
Moreno, Q., Dieckmann, M.E., Folini, D., Walder, R., Ribeyre, X., Tikhonchuk, V.T. & d'Humières, E. 2020 Shocks and phase space vortices driven by a density jump between two clouds of electrons and protons. Plasma Phys. Control. Fusion 62 (2), 025022.CrossRefGoogle Scholar
Moritaka, T., Kuramitsu, Y., Liu, Y.-L. & Chen, S.-H. 2016 Spontaneous focusing of plasma flow in a weak perpendicular magnetic field. Phys. Plasmas 23 (3), 032110.CrossRefGoogle Scholar
Nechaev, A.A., Garasev, M.A., Kocharovsky, V.V. & Kocharovsky, V.V. 2020 a Weibel mechanism of magnetic-field generation in the process of expansion of a collisionless-plasma bunch with hot electrons. Radiophys. Quant. El. 62 (12), 830848.CrossRefGoogle Scholar
Nechaev, A.A., Garasev, M.A., Stepanov, A.N. & Kocharovsky, V.V. 2020 b Formation of a density bump in a collisionless electrostatic shock wave during expansion of a hot dense plasma into a cold rarefied one. Plasma Phys. Rep. 46 (8), 765783.CrossRefGoogle Scholar
Patel, B.G., Behera, N., Singh, R.K., Kumar, A. & Das, A. 2021 A 3D magnetohydrodynamic simulation of the propagation of a plasma plume transverse to applied magnetic field. Plasma Phys. Control. Fusion 63 (11), 115020.CrossRefGoogle Scholar
Plechaty, C., Presura, R. & Esaulov, A.A. 2013 Focusing of an explosive plasma expansion in a transverse magnetic field. Phys. Rev. Lett. 111 (18), 185002.CrossRefGoogle Scholar
Priest, E. 2014 Magnetohydrodynamics of the Sun. Cambridge University Press.Google Scholar
Quinn, K., Romagnani, L., Ramakrishna, B., Sarri, G., Dieckmann, M.E., Wilson, P.A., Fuchs, J., Lancia, L., Pipahl, A., Toncian, T., et al. 2012 Weibel-induced filamentation during an ultrafast laser-driven plasma expansion. Phys. Rev. Lett. 108, 135001.CrossRefGoogle ScholarPubMed
Romagnani, L., Bulanov, S.V., Borghesi, M., Audebert, P., Gauthier, J.C., Löwenbrück, K., Mackinnon, A.J., Patel, P., Pretzler, G., Toncian, T., et al. 2008 Observation of collisionless shocks in laser-plasma experiments. Phys. Rev. Lett. 101, 025004.CrossRefGoogle ScholarPubMed
Ruyer, C., Bolaños, S., Albertazzi, B., Chen, S.N., Antici, P., Böker, J., Dervieux, V., Lancia, L., Nakatsutsumi, M., Romagnani, L., et al. 2020 Growth of concomitant laser-driven collisionless and resistive electron filamentation instabilities over large spatiotemporal scales. Nat. Phys. 16 (9), 983988.CrossRefGoogle Scholar
Ruyer, C., Gremillet, L. & Bonnaud, G. 2015 Weibel-mediated collisionless shocks in laser-irradiated dense plasmas: prevailing role of the electrons in generating the field fluctuations. Phys. Plasmas 22 (8), 082107.CrossRefGoogle Scholar
Sakagami, Y., Kawakami, H., Nagao, S. & Yamanaka, C. 1979 Two-dimensional distribution of self-generated magnetic fields near the laser-plasma resonant-interaction region. Phys. Rev. Lett. 42 (13), 839842.CrossRefGoogle Scholar
Sakawa, Y., Morita, T., Kuramitsu, Y. & Takabe, H. 2016 Collisionless electrostatic shock generation using high-energy laser systems. Adv. Phys. X 1 (3), 425443.Google Scholar
Schoeffler, K.M. & Silva, L.O. 2018 General kinetic solution for the Biermann battery with an associated pressure anisotropy generation. Plasma Phys. Control. Fusion 60 (1), 014048.CrossRefGoogle Scholar
Silva, L.O. 2006 Physical problems (microphysics) in relativistic plasma flows. AIP Conf. Proc. 856, 109128.CrossRefGoogle Scholar
Sironi, L. & Spitkovsky, A. 2009 Particle acceleration in relativistic magnetized collisionless pair shocks: dependence of shock acceleration on magnetic obliquity. Astrophys. J. 698 (2), 15231549.CrossRefGoogle Scholar
Sironi, L., Spitkovsky, A. & Arons, J. 2013 The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771 (1), 54.CrossRefGoogle Scholar
Spitkovsky, A. 2008 Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. 682 (1), L5L8.CrossRefGoogle Scholar
Srivastava, A.K., Mishra, S.K., Jelınek, P., Samanta, T., Tian, H., Pant, V., Kayshap, P., Banerjee, D., Doyle, J.G. & Dwivedi, B.N. 2019 On the observations of rapid forced reconnection in the solar corona. Astrophys. J. 887 (2), 137.CrossRefGoogle Scholar
Thaury, C., Mora, P., Héron, A. & Adam, J.C. 2010 Self-generation of megagauss magnetic fields during the expansion of a plasma. Phys. Rev. E 82 (1), 016408.CrossRefGoogle ScholarPubMed
Vagin, K.Y. & Uryupin, S.A. 2014 On the growth rate of aperiodic instability in plasma with an anisotropic bi-Maxwellian electron velocity distribution. Plasma Phys. Rep. 40 (5), 393403.CrossRefGoogle Scholar
Viall, N.M. & Borovsky, J.E. 2020 Nine outstanding questions of solar wind physics. J. Geophys. Res. 125 (7).CrossRefGoogle ScholarPubMed
Vörös, Z., Yordanova, E., Varsani, A., Genestreti, K.J., Khotyaintsev, Y.V., Li, W., Graham, D.B., Norgren, C., Nakamura, R., Narita, Y., et al. 2017 MMS observation of magnetic reconnection in the turbulent magnetosheath. J. Geophys. Res. 122 (11), 1144211467.CrossRefGoogle Scholar
Weibel, E.S. 1959 Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2 (3), 8384.CrossRefGoogle Scholar