Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T16:34:39.396Z Has data issue: false hasContentIssue false

Multipoint observations of plasma phenomena made in space by Cluster

Published online by Cambridge University Press:  11 March 2015

M. L. Goldstein*
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
P. Escoubet
Affiliation:
ESA/ESTEC, Noordwijk, the Netherlands
K.-Joo Hwang
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA University of Maryland at Baltimore County, Baltimore, MD 21250, USA
D. E. Wendel
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
A.-F. Viñas
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
S. F. Fung
Affiliation:
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
S. Perri
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036 Rende, Italy
S. Servidio
Affiliation:
Dipartimento di Fisica, Università della Calabria, I-87036 Rende, Italy
J. S. Pickett
Affiliation:
Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA
G. K. Parks
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
F. Sahraoui
Affiliation:
Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique-UPMC, Observatoire de Saint-Maur, 94107 Saint-Maur-des-Fossés, France
C. Gurgiolo
Affiliation:
Bitterroot Basic Research, Hamilton, MT 59840-9369, USA
W. Matthaeus
Affiliation:
Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
J. M. Weygand
Affiliation:
Institute of Geophysics and Planetary Physics, Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA
*
Email address for correspondence: [email protected]

Abstract

Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005Sur. Geophys.26, 307–339, Paschmann et al. 2005Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series of ISSI. Berlin: Springer, Goldstein et al. 2006Adv. Space Res.38, 21–36, Taylor et al. 2010The Cluster Mission: Space Plasma in Three Dimensions, Springer, pp. 309–330 and Escoubet et al. 2013Ann. Geophys.31, 1045–1059).

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alcaydé, D. 2001 Editorial. Ann. Geophys. 19 (10/12), 11951195.CrossRefGoogle Scholar
Alexandrova, O., Carbone, V., Veltri, P. and Sorriso-Valvo, L. 2008a Small scale energy cascade of the solar wind turbulence. Astrophys. J. Lett. 674, 11531157.CrossRefGoogle Scholar
Alexandrova, O., Lacombe, C. and Mangeney, A. 2008b Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: cluster observations. Ann. Geophys. 26, 35853596.CrossRefGoogle Scholar
Alexandrova, O., Lacombe, C., Mangeney, A., Grappin, R. and Maksimovic, M. 2012 Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. 760 (2), 121.CrossRefGoogle Scholar
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J. and Robert, P. 2009 Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16), 165003.CrossRefGoogle ScholarPubMed
Andronov, A. A. and Trakhtengerts, V. Y. 1964 Kinetic instability of the Earth's outer radiation belt. Geomagnetism and Aeronomy 4, 233242.Google Scholar
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coroniti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Lühr, H. and Paschmann, G. 1992 Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 40274039.CrossRefGoogle Scholar
Angelopoulos, V., Mozer, F. S., Mukai, T., Tsuruda, K., Kokubun, S. and Hughes, T. J. 1999 On the relationship between bursty flows, current disruption and substorms. Geophys. Res. Lett. 26, 2841.CrossRefGoogle Scholar
Antiochos, S. K., Karpen, J. T. and DeVore, C. R. 2002 Coronal magnetic field relaxation by null-point reconnection. Astrophys. J. 575 (1), 578584.CrossRefGoogle Scholar
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G. and Hwang, K.-J. 2011 Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events, nature physics. Nature Phys. 7, 360365.CrossRefGoogle Scholar
Ashour-Abdalla, M. and Kennel, C. F. 1978 Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531.CrossRefGoogle Scholar
Auer, P. L., Kilb, R. W. and Crevier, W. F. 1971 Thermalization in the Earth's bow shock. J. Geophys. Res. 76, 2927.CrossRefGoogle Scholar
Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C. and Sundkvist, D. 2009 Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103, 211101.CrossRefGoogle ScholarPubMed
Bale, S. D., Kellogg, P. J., Mozer, F. S., Horbury, T. S. and Rème, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002.CrossRefGoogle ScholarPubMed
Balogh, A.et al. 1997 The cluster magnetic field investigation. Space Sci. Rev. 79, 65.CrossRefGoogle Scholar
Balogh, A. C.et al. 2001 The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge: Cambridge University Press.Google Scholar
Behlke, R., André, M., Bale, S. D., Pickett, J. S., Cattell, C. A., Lucek, E. A. and Balogh, A. 2004 Solitary structures associated with short large-amplitude magnetic structures (SLAMS) upstream of the Earth's quasi-parallel bow shock. Geophys. Res. Lett. 31, 16805.CrossRefGoogle Scholar
Bell, T. F., Inan, U. S., Haque, N. and Pickett, J. S. 2009 Source regions of banded chorus. Geophys. Res. Lett. 36, 11101.CrossRefGoogle Scholar
Belmabrouk, H. and Michard, M. 1998 Taylor length scale measurement by laser Doppler velocimetry. Exp. Fluids 25, 6976.CrossRefGoogle Scholar
Benson, R. F. and Calvert, W. 1979 Isis 1 observations at the source of auroral kilometric radiation. Geophys. Res. Lett. 6, 479482.CrossRefGoogle Scholar
Bieber, J. W., Matthaeus, W. H., Smith, C. W., Wanner, W., Kallenrode, M.-B. and Wibberenz, G. 1994 Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294306.CrossRefGoogle Scholar
Bieber, J. W., Wanner, W. and Matthaeus, W. H. 1996 Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J. Geophys. Res. 101, 2511–2422.CrossRefGoogle Scholar
Birn, J., Hesse, M., Nakamura, R. and Zaharia, S. 2013 Particle acceleration in dipolarization events. J. Geophys. Res. 118, 19601971.CrossRefGoogle Scholar
Birn, J., Raeder, R. A., Yang, Y. L., Wolf, R. A. and Hesse, M. 2004 On the propagation of bubbles in the geomagnetic tail. Ann. Geophys. 22, 17731786.CrossRefGoogle Scholar
Boardsen, S. A., Sundberg, T., Slavin, J. A., Anderson, B. J., Korth, H., Solomon, S. C. and Blomberg, L. G. 2010 Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury's magnetosphere during MESSENGER's third flyby. Geophys. Res. Lett. 37, 12101.CrossRefGoogle Scholar
Bogdanov, S. Y., Burilina, V. B., Markov, V. S. and Frank, A. G. 1994 Formation of current sheets in 3d magnetic-fields with a null point. Jetp Lett. 59 (8), 537541.Google Scholar
Borovsky, J. E. 2006 Eddy viscosity and flow properties of the solar wind: co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling. Phys. Plasmas 13 (5), 056505.CrossRefGoogle Scholar
Bortnik, J., Thorne, R. M. and Meredith, N. P. 2008 The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452, 6266.CrossRefGoogle ScholarPubMed
Bortnik, J., Thorne, R. M. and Meredith, N. P. 2009 Plasmaspheric hiss overview and relation to chorus. J. Atmos. Sol.-Terr. Phys. 71, 16361646.CrossRefGoogle Scholar
Breneman, A., Kletzing, C. A., Chum, J., Santolik, O., Gurnett, D. A. and Pickett, J. S. 2007 Multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. 112, 5221.Google Scholar
Breneman, A. W., Kletzing, C. A., Pickett, J., Chum, J. and Santolik, O. 2009 Statistics of multispacecraft observations of chorus dispersion and source location. J. Geophys. Res. (Space Phys.) 114, 6202.CrossRefGoogle Scholar
Bruno, R. and Carbone, V. 2005 The solar wind as a turbulence laboratory. J. Living Rev. Sol. Phys. 2.Google Scholar
Bruno, R., Carbone, V., Veltri, P., Pietropaolo, E. and Bavassano, B. 2001 Identifying intermittency events in the solar wind. Planet. Space Sci. 49, 1201.CrossRefGoogle Scholar
Burgess, D. 1989 On the effect of a tangential discontinuity on ions specularly reflected at an oblique shock. J. Geophys. Res. 94, 472478.CrossRefGoogle Scholar
Burgess, D. 2006 Interpreting multipoint observations of substructure at the quasi-perpendicular bow shock: simulations. J. Geophys. Res. (Space Phys.) 111 (A10), 10210.CrossRefGoogle Scholar
Burgess, D.et al. 2005 Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205222.CrossRefGoogle Scholar
Burlaga, L. F. 1968 Micro-scale structures in the interplanetary medium. Sol. Phys. 4, 67.CrossRefGoogle Scholar
Burlaga, L. F. 1969 Directional discontinuities in the interplanetary magnetic field. Sol. Phys. 7, 54.CrossRefGoogle Scholar
Calvert, W. 1981 The AKR emission cone at low frequencies. Geophys. Res. Lett. 8, 11591162.CrossRefGoogle Scholar
Camporeale, E. and Burgess, D. 2011a Erratum: ‘The dissipation of solar wind turbulent fluctuations at electron scales’ (2011, ApJ, 730, 114). Astrophys. J. 735, 67.CrossRefGoogle Scholar
Camporeale, E. and Burgess, D. 2011b The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730, 114.CrossRefGoogle Scholar
Carbone, V., Veltri, P. and Mangeney, A. 1990 Coherent structure formation and magnetic field line reconnection in magnetohydrodynamic turbulence. Phys. Fluids A 2, 1487.CrossRefGoogle Scholar
Cattell, C.et al. 2005 Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. (Space Phys.) 110, 1211.CrossRefGoogle Scholar
Chang, O., Peter Gary, S. and Wang, J. 2011 Whistler turbulence forward cascade: three-dimensional particle-in-cell simulations. Geophys. Res. Lett. 38, 22102.CrossRefGoogle Scholar
Chanteur, G. 1998 Spatial interpolation for four spacecraft: theory. ISSI Sci. Rep. Ser. 1, 349370.Google Scholar
Chapman, S. C., Lee, R. E. and Dendy, R. O. 2005 Perpendicular shock reformation and ion acceleration. Space Sci. Rev. 121, 519.CrossRefGoogle Scholar
Chaston, C. C., Wilber, M., Mozer, F. S., Fujimoto, M., Goldstein, M. L., Acuña, M., Rème, H. and Fazakerley, A. 2007 Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause. Phys. Rev. Lett. 99, 175004.CrossRefGoogle ScholarPubMed
Chen, C. H. K., Bale, S. D., Salem, C. S. and Maruca, B. A. 2013 Residual energy spectrum of solar wind turbulence. Astrophys. J. 770, 125.CrossRefGoogle Scholar
Chen, L.-J.et al. 2009 Multi-spacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection. Phys. Plasma 16, 056501.CrossRefGoogle Scholar
Chen, L.-J.et al. 2008 Evidence of an extended electron current sheet and its neighboring magnetic island during magnetotail reconnection. J. Geophys. Res. (Space Phys.) 113 (A12), 12213.CrossRefGoogle Scholar
Chen, L.-J. and Parks, G. K. 2002a Bgk electron solitary waves: 1d and 3d. Nonlinear Proc. Geophys. 9, 111.CrossRefGoogle Scholar
Chen, L.-J. and Parks, G. K. 2002b BGK electron solitary waves in 3D magnetized plasma. Geophys. Res. Lett. 29, 1331.CrossRefGoogle Scholar
Chum, J., Santolík, O., Breneman, A. W., Kletzing, C. A., Gurnett, D. A. and Pickett, J. S. 2007 Chorus source properties that produce time shifts and frequency range differences observed on different Cluster spacecraft. J. Geophys. Res. (Space Phys.) 112, 6206.CrossRefGoogle Scholar
Chum, J., Santolik, O., Gurnett, D. A. and Pickett, J. S. 2009 Oblique lower band chorus waves: time shifts between discrete elements observed by the Cluster spacecraft. J. Geophys. Res. (Space Phys.) 114, A00F02.CrossRefGoogle Scholar
Coates, A. J., Mazelle, C. and Neubauer, F. M. 1997 Bow shock analysis at comets halley and grigg-skjellerup. J. Geophys. Res. 102 (A4), 71057114.CrossRefGoogle Scholar
Constantinescu, O. D., Glassmeier, K.-H., Motschmann, U., Treumann, R. A., Fornaçon, K.-H. and Fränz, M. 2006 Plasma wave source location using CLUSTER as a spherical wave telescope. J. Geophys. Res. (Space Phys.) 111, 9221.CrossRefGoogle Scholar
Cornilleau-Wehrlin, N.et al. 2003 First results obtained by the Cluster STAFF experiment. Ann. Geophys. 21, 437.CrossRefGoogle Scholar
Coroniti, F. V. 1985 Space plasma turbulent dissipation: reality or Myth? Space Sci. Rev. 42, 399.CrossRefGoogle Scholar
Cowee, M. M., Winske, D. and Gary, S. P. 2009 Two-dimensional hybrid simulations of superdiffusion at the magnetopause driven by Kelvin-Helmholtz instability. J. Geophys. Res. 114 10209.CrossRefGoogle Scholar
Cutler, J. C., Dougherty, M. K., Lucek, E. and Masters, A. 2011 Evidence of surface wave on the dusk flank of Saturn's magnetopause possibly caused by the Kelvin-Helmholtz instability. J. Geophys. Res. (Space Phys.) 116 (A15), 10220.CrossRefGoogle Scholar
Dasso, S., Milano, L. J., Matthaeus, W. H. and Smith, C. W. 2005 Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. 635, L181.CrossRefGoogle Scholar
Daughton, W., Lapenta, G. and Ricci, P. 2004 Nonlinear evolution of the lower-hybrid drift instability in a current sheet. Phys. Rev. Lett. 93, 105004.CrossRefGoogle Scholar
Décréau, P. M. E.et al. and Group, Whisper Experimenters 2001 Early results from the whisper instrument on cluster: an overview. Ann. Geophys. 19 (1), 12411258.CrossRefGoogle Scholar
Delcourt, D. C. 2002 Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol. Terr. Phys. 64, 551559.CrossRefGoogle Scholar
Delcourt, D. C., Pedersen, A. and Sauvaud, J. A. 1990 Dynamics of single-particle orbits during substorm expansion phase. J. Geophys. Res. 95, 2085320865.Google Scholar
Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P. and Strangeway, R. 1998 FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 20692072.CrossRefGoogle Scholar
Deng, X., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., Ergun, R. E. and Schriver, D. 2010a Correction to ‘Wave and particle characteristics of earthward electron injections associated with dipolarization fronts’. J. Geophys. Res. (Space Phys.) 115 (A14), 12210.Google Scholar
Deng, X., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., Ergun, R. E. and Schriver, D. 2010b Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. J. Geophys. Res. (Space Phys.) 115, 9225.Google Scholar
Deng, X. H.et al. 2006 Observations of electrostatic solitary waves associated with reconnection by Geotail and Cluster. Adv. Space Res. 37, 13731381.CrossRefGoogle Scholar
Deng, X. H.et al. 2009 Dynamics and waves near multiple magnetic null points in reconnection diffusion region. J. Geophys. Res. (Space Phys.) 114, 7216.CrossRefGoogle Scholar
Dorelli, J. C., Bhattacharjee, A. and Raeder, J. 2007a Correction to ‘Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions’. J. Geophys. Res. (Space Phys.) 112, 6204.Google Scholar
Dorelli, J. C., Bhattacharjee, A. and Raeder, J. 2007b Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions. J. Geophys. Res. (Space Phys.) 112, 2202.Google Scholar
Dubyagin, S., Sergeev, V., Apatenkov, S., Angelopoulos, V., Nakamura, R., McFadden, J., Larson, D. and Bonnell, J. 2010 Pressure and entropy changes in the flow-braking region during magnetic field dipolarization. J. Geophys. Res. (Space Phys.) 115 (A14), 10225.CrossRefGoogle Scholar
Dungey, J. W. 1954 Electrodynamics of the outer atmosphere. In: Physics of the Ionosphere: Report of the Conference Held at the Cavendish Laboratory, Cambridge, England, September, pp. 229, Phys. Soc. London.Google Scholar
Dunlop, M. W., Balogh, A., Glassmeier, K. H. and Robert, P. 2002 Four-point cluster application of magnetic field analysis tools: the curlometer. J. Geophys. Res. (Space Phys.) 107 (A11), 1385.Google Scholar
Dunlop, M. W. and Eastwood, J. P. 2008 The curlometer and other gradient based methods. In: Multi-Spacecraft Analysis Methods Revisited / Gotz Paschmann and Patrick W. Daly (eds.). ISSI Scientific Reports Series, Vol. 8, 17–26.Google Scholar
Dunlop, M. W.et al. 2011 Extended magnetic reconnection across the dayside magnetopause. Phys. Rev. Lett. 107, 025004.CrossRefGoogle ScholarPubMed
Eastwood, J. P., Phan, T. D., Bale, S. D. and Tjulin, A. 2009 Observations of turbulence generated by magnetic reconnection. Phys. Rev. Lett. 102 (3), 35001.CrossRefGoogle ScholarPubMed
Eastwood, J. P., Phan, T. D., Øieroset, M. and Shay, M. A. 2010 Average properties of the magnetic reconnection ion diffusion region in the Earth's magnetotail: the 2001–2005 Cluster observations and comparison with simulations. J. Geophys. Res. (Space Phys.) 115, 8215.CrossRefGoogle Scholar
Egedal, J., Fox, W., Porkolab, M., Øieroset, M., Lin, R. P., Daughton, W. and Drake, J. F. 2008 Evidence and theory for trapped electrons in guide field magnetotail reconnection. J. Geophys. Res. 113, 12207.CrossRefGoogle Scholar
Egedal, J., , A., Chen, L. J., Lefebvre, B., Daughton, W. and Fazakerley, A. 2010 Cluster observation of bidirectional beams caused by electron trapping durring antiparallel reconnection. J. Geophys. Res. 115, 3214.CrossRefGoogle Scholar
Egedal, J., Øieroset, M., Fox, W. and Lin, R. P. 2005 In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the Earth's magnetotail. Phys. Rev. Lett. 94, 25006.CrossRefGoogle ScholarPubMed
El-Alaoui, M., Ashour-Abdalla, M., Richard, R. L., Goldstein, M., Weygand, J. M. and Walker, R. J. 2010 Global magnetohydrodynamic simulation of reconnection and turbulence in the plasma sheet. J. Geophys. Res. 115, 15653.CrossRefGoogle Scholar
Ellacott, S. W. and Wilkinson, W. P. 2003 Heating of directly transmitted ions at low Mach number perpendicular shocks: new insights from a statistical physics formulation. J. Geophys. Res. (Space Phys.) 108, 1409.CrossRefGoogle Scholar
Escoubet, C. P., Fehringer, M. and Goldstein, M. L. 2001 The Cluster mission. Ann. Geophys. 19, 1197.CrossRefGoogle Scholar
Escoubet, C. P., Laakso, H. and Goldstein, M. 2005 3D Plasma structures observed by the four cluster spacecraft. In: Multiscale Coupling of Sun-Earth Processes (ed. Liu, A. T. Y., Kamide, Y. and Consolini, G.), p. 459, Amsterdam, Netherlands: Elsevier B. V. ISBN 0-444-51881-9.Google Scholar
Escoubet, C. P., Russell, C. T. and Schmidt, R. 1997 The Cluster and PHOENIX Missions. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Escoubet, C. P., Taylor, M. G. G. T., Masson, A., Laakso, H., Volpp, J., Hapgood, M. and Goldstein, M. L. 2013 Dynamical processes in space: Cluster results. Ann. Geophys. 31, 10451059.CrossRefGoogle Scholar
Fairfield, D. H., Baumjohann, W., Paschmann, G., Luehr, H. and Sibeck, D. G. 1990 Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. J. Geophys. Res. 78, 37313744.Google Scholar
Fairfield, D. H., Kuznetsova, M. M., Mukai, T., Nagai, T., Gombosi, T. I. and Ridley, A. J. 2007 Waves on the dusk flank boundary layer during very northward interplanetary magnetic field conditions: observations and simulation. J. Geophys. Res. 112 8206.CrossRefGoogle Scholar
Farrell, W. M., Desch, M. D., Ogilvie, K. W. and Kaiser, M. L. 2003 The role of upper hybrid waves in magnetic reconnection. Geophys. Res. Lett. 30, 2259.CrossRefGoogle Scholar
Feldman, W. C., Asbridge, J. R., Bame, S. J., Montgomery, M. D. and Gary, S. P. 1975 Solar wind electrons. J. Geophys. Res. 80, 41814196.CrossRefGoogle Scholar
Fok, M.-C., Moore, T. E., Brandt, P. C., Delcourt, D. C., Slinker, S. P. and Fedder, J. A. 2006 Impulsive enhancements of oxygen ions during substorms. J. Geophys. Res. 111, 10222.CrossRefGoogle Scholar
Foullon, C., Farrugia, C. J., Fazakerley, A. N., Owen, C. J., Gratton, F. T. and Torbert, R. B. 2008 Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause. J. Geophys. Res. 113 11203.CrossRefGoogle Scholar
Foullon, C., Farrugia, C. J., Fazakerley, A. N., Owen, C. J. and Gratton, F. T. 2010 On the multispacecraft determination of periodic surface wave phase speeds and wavelengths. J. Geophys. Res. 115 9203.CrossRefGoogle Scholar
Fu, H. S.et al. 2013 Dipolarization fronts as a consequence of transient reconnection: in situ evidence. Geophys. Res. Lett. 40, 60236027.CrossRefGoogle Scholar
Fu, H. S., Khotyaintsev, Y. V., André, M. and Vaivads, A. 2011 Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett. 38, 16104.CrossRefGoogle Scholar
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M. and Huang, S. Y. 2012 Occurrence rate of earthward-propagating dipolarization fronts. Geophys. Res. Lett. 39, 10101.CrossRefGoogle Scholar
Fujimoto, K. and Sydora, R. D. 2008 Whistler waves associated with magnetic reconnection. Geophys. Res. Lett. 36, L19 112.Google Scholar
Fung, S. F. and Viñas, A. F. 1994 Excitation of high frequency electromagnetic waves by energetic electrons with an effective loss cone distribution. J. Geophys. Res. 99, 86718686.CrossRefGoogle Scholar
Fuselier, S. A., Petrinec, S. M. and Trattner, K. J. 2010 Antiparallel magnetic reconnection rates at the earth's magnetopause. J. Geophys. Res. 115 10207.CrossRefGoogle Scholar
Galsgaard, K. and Pontin, D. I. 2011a Current accumulation at an asymmetric 3D null point caused by generic shearing motions. Astron. Astrophys. 534, A2.CrossRefGoogle Scholar
Galsgaard, K. and Pontin, D. I. 2011b Steady state reconnection at a single 3D magnetic null point. Astron. and Astrophys. 529, A20.CrossRefGoogle Scholar
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
Gedalin, M. 1997 Ion heating in oblique low-Mach number shocks. Geophys. Res. Lett. 24, 25112514.CrossRefGoogle Scholar
Ghosh, S. S., Pickett, J. S., Lakhina, G. S., Winningham, J. D., Lavraud, B. and DéCréAu, P. M. E. 2008 Parametric analysis of positive amplitude electron acoustic solitary waves in a magnetized plasma and its application to boundary layers. J. Geophys. Res. (Space Phys.) 113, 6218.CrossRefGoogle Scholar
Glassmeier, K. H.et al. 2001 Cluster as a wave telescope - first results from the fluxgate magnetometer. Ann. Geophys. 19, 1439.CrossRefGoogle Scholar
Gnavi, G., Gratton, F. T., Farrugia, C. J. and Bilbao, L. 2006 The KH stability of the supersonic magnetopause flanks modeled by continuous profiles for the transition. In: Plasma and Fusion Science: 16th IAEA Technical Meeting on Research using Small Fusion Devices (ed. Herrera-Velázquez, J. J. E.), American Institute of Physics Conference Series, Vol. 875, pp. 296–299.Google Scholar
Goldstein, M. L., Escoubet, C. P. and Laakso, H. 2006 Multiscale, multipoint measurements from Cluster: advancing our scientific understanding of geospace. Adv. Space Res. 38, 2136.CrossRefGoogle Scholar
Gosling, J. T. 1990 Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Physics of Magnetic Flux Ropes, Geophys. Monograph 58. Washington DC, USA: American Geophysical Union, p. 343.CrossRefGoogle Scholar
Gosling, J. T., Bame, S., Feldman, W., McComas, D., Phillips, J. and Goldstein, B. 1993 Counterstreaming suprathermal electron events upstream of corotating shocks in the solar wind beyond 2 AU: Ulysses. Geophys. Res. Lett. 20, 2335.CrossRefGoogle Scholar
Gosling, J. T. and Robson, A. E. 1985 Ion reflection, gyration, and dissipation at supercritical shocks. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 35, 141152.Google Scholar
Gosling, J. T., Skoug, R. M., McComas, D. J., Phan, T. D. and Skoug, R. M. 2005 Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110 1107.CrossRefGoogle Scholar
Gosling, J. T. and Szabo, A. 2008 Bifurcated current sheets produced by magnetic reconnection in the solar wind. J. Geophys. Res. 113, 10103.CrossRefGoogle Scholar
Gratton, F. T., Bender, L., Farrugia, C. J. and Gnavi, G. 2004 Concerning a problem on the Kelvin-Helmholtz stability of the thin magnetopause. J. Geophys. Res. 109, 4211.CrossRefGoogle Scholar
Greco, A., Chuychai, P., Matthaeus, W. H., Servidio, S. and Dmitruk, P. 2008 Intermittent mhd structures and classical discontinuities. Geophys. Res. Lett. 35, L19 111.CrossRefGoogle Scholar
Greco, A., Matthaeus, W. H., Servidio, S., Chuychai, P. and Dmitruk, P. 2009 Statistical analysis of discontinuities in solar wind ace data and comparison with intermittent mhd turbulence. Astrophys. J. 691, L111.CrossRefGoogle Scholar
Greco, A. and Perri, S. 2014 Identification of high shears and compressive discontinuities in the inner heliosphere. Astrophys. J. 784, 163.CrossRefGoogle Scholar
Green, J. L. and Gallagher, D. L. 1985 The detailed intensity distribution of the AKR emission cone. J. Geophys. Res. 90, 96419649.CrossRefGoogle Scholar
Green, J. L., Gurnett, D. A. and Shawhan, S. D. 1977 The angular distribution of auroral kilometric radiation. J. Geophys. Res. 82, 18251838.CrossRefGoogle Scholar
Greene, J. M. 1992 Locating 3-dimensional roots by a bisection method. J. Comput. Phys. 98 (2), 194198.CrossRefGoogle Scholar
Greenstadt, E. W., Green, I. M., Inouye, G. T., Colburn, D. S., Binsack, J. H. and Lyon, E. F. 1970 Dual satellite observations of earth's bow shock. III: field determined shock structure. Cosmic Electrodynamics 1, 316327.Google Scholar
Grison, B, Sahraoui, F, Lavraud, B, Chust, T, Cornilleau-Wehrlin, N, Reme, H, Balogh, A and André, M 2005 Wave particle interactions in the high-altitude polar cusp: a Cluster case study. Ann. Geophys. 23 (1), 36993713.CrossRefGoogle Scholar
Guo, R. L.et al. 2013 Separator reconnection with antiparallel/component features observed in magnetotail plasmas. J. Geophys. Res. (Space Phys.) 118 (10), 61166126.CrossRefGoogle Scholar
Gurgiolo, C., Goldstein, M. L., Viñas, A. F., Matthaeus, W. H. and Fazakerley, A. N. 2011 Observations of electron vorticity in the inner plasma sheet. Ann. Geophys. 29, 15171527.CrossRefGoogle Scholar
Gurgiolo, C., Goldstein, M. L., Matthaeus, W. H., Viñas, A. F. and Fazakerley, A. N. 2013 Characteristics of the Taylor microscale in the solar wind/foreshock: magnetic field and electron velocity measurements. Ann. Geophys. 31, 20632075.CrossRefGoogle Scholar
Gurgiolo, C., Goldstein, M. L., Viñas, A. F. and Fazakerley, A. N. 2010 First measurements of electron vorticity in the foreshock and solar wind. Ann. Geophys. 28, 21872200.CrossRefGoogle Scholar
Gurnett, D. and Anderson, R. 1981 The kilometric radio emission spectrum: relationship to auroral acceleration processes, in Physics of Auroral Arc Formation. Geophys. Monogr. 25, 341.Google Scholar
Gurnett, D. A. 1985 Plasma waves and instabilities. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 35, 207224.Google Scholar
Gurnett, D. A., Anderson, R. R., Scarf, F. L., Fredricks, R. W. and Smith, E. J. 1979 Initial results from the ISEE-1 and -2 plasma wave investigation. Space Sci. Rev. 23, 103122.CrossRefGoogle Scholar
Gurnett, D. A.et al. 2001 First results from the Cluster wideband plasma wave investigation. Ann. Geophys. 19 (1), 12591272.CrossRefGoogle Scholar
Gustafsson, G.et al. 2001 First results of electric field and density observations by Cluster EFW based on initial months of operation. Ann. Geophys. 19 (1), 12191240.CrossRefGoogle Scholar
Hada, T., Koga, D. and Yamamoto, E. 2003 Phase coherence of mhd waves in the solar wind. Space Sci. Rev. 107, 463.CrossRefGoogle Scholar
Haque, N., Inan, U. S., Bell, T. F. and Pickett, J. S. 2012 Spatial dependence of banded chorus intensity near the magnetic equator. Geophys. Res. Lett. 39, 17103.CrossRefGoogle Scholar
Haque, N., Inan, U. S., Bell, T. F., Pickett, J. S., Trotignon, J. G. and Facskó, G. 2011 Cluster observations of whistler mode ducts and banded chorus. Geophys. Res. Lett. 38, 18107.CrossRefGoogle Scholar
Hasegawa, A. 1975 Plasma Instabilities and Non-Linear Effects. New York: Springer-Verlag.CrossRefGoogle Scholar
Hasegawa, H., Fujimoto, M., Phan, T. D., Rème, H., Balogh, A., Dunlop, M. W., Hashimoto, C. and TanDokoro, R. 2004 Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755758.CrossRefGoogle ScholarPubMed
Hasegawa, H.et al. 2009 Kelvin-Helmholtz waves at the Earth's magnetopause: multiscale development and associated reconnection. J. Geophys. Res. 114, 12207.CrossRefGoogle Scholar
He, J.-S., Marsch, E., Tu, C. Y., Zong, Q. G., Yao, S. and Tian, H. 2011 Two-dimensional correlation functions for density and magnetic field fluctuations in magnetosheath turbulence measured by the Cluster spacecraft. J. Geophys. Res. 116 (A6), 6207.CrossRefGoogle Scholar
He, J.-S.et al. 2008a A magnetic null geometry reconstructed from Cluster spacecraft observations. J. Geophys. Res. (Space Phys.) 113, 5205.CrossRefGoogle Scholar
He, J.-S.et al. 2008b Electron trapping around a magnetic null. Geophys. Res. Lett. 35, 14104.CrossRefGoogle Scholar
Hones, E. W. Jr, Paschmann, G., Bame, S. J., Asbridge, J. R., Sckopke, N. and Schindler, K. 1978 Vortices in magneto spheric plasma flow. Geophys. Res. 5 (12), 1059.Google Scholar
Horbury, T. S., Cargill, P. J., Lucek, E. A., Eastwood, J., Balogh, A., Dunlop, M. W., Fornacon, K.-H. and Georgescu, E. 2002 Four spacecraft measurements of the quasiperpendicular terrestrial bow shock: orientation and motion. J. Geophys. Res. (Space Phys.) 107, 1208.CrossRefGoogle Scholar
Horne, R. B.et al. 2005 Wave acceleration of electrons in the van allen radiation belts. Nature 8(doi:10.1038/nature03939), 437.Google Scholar
Hoshino, M. 2005 Electron surfing acceleration in magnetic reconnection. J. Geophys. Res. 110, 10215.CrossRefGoogle Scholar
Hoshino, M., Mukai, T., Terasawa, T. and Shinohara, I. 2001 Superthermal electron acceleration in magnetic reconnection. J. Geophys. Res. 106, 25972.CrossRefGoogle Scholar
Howes, G. G., TenBarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R. and Tatsuno, T. 2011 Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Phys. Rev. Lett. 107 (3), 35004.CrossRefGoogle ScholarPubMed
Huang, S. Y., Sahraoui, F., Deng, X. H., He, J. S., Yuan, Z. G., Zhou, M., Pang, Y. and Fu, H. S. 2014 Kinetic turbulence in the terrestrial magnetosheath: Cluster observations. Astrophys. J. Lett. 789, L28.CrossRefGoogle Scholar
Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Pang, Y., Wei, Q., Su, W., Li, H. M. and Wang, Q. Q. 2012 Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann. Geophys. 30, 97107.CrossRefGoogle Scholar
Huang, S. Y., Zhou, M., Sahraoui, F., Deng, X.-H., Pang, Y., Yuan, Z. G., Wei, Q., Wang, J. F. and Zhou, X. M. 2010 Wave properties in the magnetic reconnection diffusion region with high β: application of the k-filtering method to Cluster multispacecraft data. J. Geophys. Res. (Space Phys.) 115 (A), 12211.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M. L., Kuznetsova, M. M., Wang, Y., Viñas, A. F. and Sibeck, D. G. 2012 The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions. J. Geophys. Res. (Space Phys.) 117, 8233.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M. L., Lee, E. and Pickett, J. S. 2011a Cluster observations of multiple dipolarization fronts. J. Geophys. Res. (Space Phys.) 116, A00I32.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M. L., Moore, T. E., Walsh, B. M., Baishev, D. G., Moiseyev, A. V., Shevtsov, B. M. and Yumoto, K. 2014b A tailward moving current sheet normal magnetic field front followed by an earthward moving dipolarization front. J. Geophys. Res. 119, 5316.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M. L., Viñas, A. F., Schriver, D. and Ashour-Abdalla, M. 2014a Wave-particle interactions during a dipolarization event. J. Geophys. Res. 119, 2484.CrossRefGoogle Scholar
Hwang, K.-J., Goldstein, M. L., Wendel, D. E., Fazakerley, A. N. and Gurgiolo, C. 2013 Cluster observations near reconnection x lines in Earth's magnetotail current sheet. J. Geophys. Res. 118, 4199.CrossRefGoogle Scholar
Hwang, K.-J., Kuznetsova, M. M., Sahraoui, F., Goldstein, M. L., Lee, E. and Parks, G. K. 2011b Kelvin-Helmholtz waves under southward interplanetary magnetic field. J. Geophys. Res. (Space Phys.) 116, 8210.CrossRefGoogle Scholar
Inan, U. S., Platino, M., Bell, T. F., Gurnett, D. A. and Pickett, J. S. 2004 Cluster measurements of rapidly moving sources of ELF/VLF chorus. J. Geophys. Res 109, 5214.CrossRefGoogle Scholar
Johnstone, A. D.et al. 1997 PEACE: a plasma electron and current experiment. Space Sci. Rev. 79, 351398.CrossRefGoogle Scholar
Jokipii, J. R. and Hollweg, J. V. 1970 Interplanetary scintillations and the structure of solar-wind fluctuations. Astrophys. J. 160, 745.CrossRefGoogle Scholar
Jones, S. T., Fok, M. and Brandt, P. C. 2006 Modeling global O+ substorm injection using analytic magnetic field model. J. Geophys. Res. 111, 11S07.CrossRefGoogle Scholar
Kailasnath, P. and Sreenivasan, K. R. 1993 Zero crossings of velocity fluctuations in turbulent boundary layers. Phys. Fluids A 11, 28792885.CrossRefGoogle Scholar
Karimabadi, H., Daughton, W. and Scudder, J. 2007 Multi-scale structure of the electron diffusion region. Geophys. Res. Lett. 34, 13104.CrossRefGoogle Scholar
Kaufmann, R. L. 1967 Shock observations with the Explorer 12 magnetometer. J. Geophys. Res. 72, 23232342.CrossRefGoogle Scholar
Keika, K., Brandt, P. C., Ohtani, S., Mitchell, D. G., Min, K., Nosé, M., Obara, T., Koshiishi, H. and Matsumoto, H. 2010 Mass-dependent evolution of energetic neutral atoms energy spectra during storm time substorms: implication for O+ nonadiabatic acceleration. J. Geophys. Res. (Space Phys.) 115, A00 I12.CrossRefGoogle Scholar
Keith, W. R., Winningham, J. D., Goldstein, M. L., Wilber, M., Fazakerley, A. N., Rème, H., Fritz, T. A., Balogh, A., Cornilleau-Wehrlin, N. and Maksimovic, M. 2005 Observations of a unique cusp signature at low and mid altitudes. Surv. Geophys. 26, 307339.CrossRefGoogle Scholar
Kennel, C. F., Edmiston, J. P. and Hada, T. 1985 A quarter century of collisionless shock research. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 34, 136.Google Scholar
Kennel, C. F. and Petschek, H. E. 1966 Limit on stable trapped particle fluxes. J. Geophys. Res. 71, 128.CrossRefGoogle Scholar
Kintner, P. M. and Seyler, C. E. 1985 The status of observations and theory of high latitude ionospheric and magnetospheric plasma turbulence. Space Sci. Rev. 41, 94129.CrossRefGoogle Scholar
Kiyani, K., Chapman, S., Khotyaintsev, Y., Dunlop, M. and Sahraoui, F. 2009 Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103, 075006.CrossRefGoogle ScholarPubMed
Kiyani, K. H., Chapman, S. C., Sahraoui, F., Hnat, B., Fauvarque, O. and Khotyaintsev, Yu V. 2013 Enhanced magnetic compressibility and isotropic scale invariance at sub-ion Larmor scales in solar wind turbulence. Astrophys. J. 763 (1), 10.CrossRefGoogle Scholar
Koga, D., Chian, A. C.-L., Miranda, R. A. and Rempel, E. L. 2007 Intermittent nature of solar wind turbulence near the earth's bow shock: phase coherence and non-gaussianity. Phys. Rev. E 75, 046401.CrossRefGoogle ScholarPubMed
Kozelov, B., Demekhov, A. G., Titova, E. E., Trakhtengerts, V. Y., Santolik, O., Macusova, E., Gurnett, D. A. and Pickett, J. S. 2008 Variations in the chorus source location deduced from fluctuations of the ambient magnetic field: comparison of cluster data and the backward-wave oscillator model. J. Geophys. Res. 113, 6216.CrossRefGoogle Scholar
Krall, N. A. 1997 What do we really know about collisionless shocks? Adv. Space Res. 20, 715724.CrossRefGoogle Scholar
Kuznetsova, M., Sibeck, D. G., Hesse, M., Rastaetter, L., Toth, G. and Gombosi, T. 2008 Global MHD simulations of dayside magnetopause dynamics. AGU Fall 2008 Meeting.Google Scholar
Laakso, H., Taylor, M. and Escoubet, C. P. 2010 The Cluster Active Archive. Springer, Dordrecht.CrossRefGoogle Scholar
Lacombe, C., Samsonov, A. A., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Harvey, C. C., Bosqued, J. M. and Travnicek, P. 2006 Cluster observations in the magnetosheath – Part 2: intensity of the turbulence at electron scales. Ann. Geophys. 24 (1), 35233531.CrossRefGoogle Scholar
Lakhina, G. S., Singh, S. V., Kakad, A. P., Goldstein, M. L., Viñas, A. F. and Pickett, J. S. 2009 A mechanism for electrostatic solitary structures in the Earth's magnetosheath. J. Geophys. Res. (Space Phys.) 114, 9212.CrossRefGoogle Scholar
Lakhina, G. S., Singh, S. V., Kakad, A. P. and Pickett, J. S. 2011 Generation of electrostatic solitary waves in the plasma sheet boundary layer. J. Geophys. Res. (Space Phys.) 116 (A15), 10218.CrossRefGoogle Scholar
Lakhina, G. S., Tsurutani, B. T., Verkhoglyadova, O. P. and Pickett, J. S. 2010 Pitch angle transport of electrons due to cyclotron interactions with the coherent chorus subelements. J. Geophys. Res. (Space Phys.) 115, A00F15.CrossRefGoogle Scholar
Le, A., Egedal, J., Daughton, W., Drake, J. F., Fox, W. and Katz, N. 2010 Magnitude of the hall fields during magnetic reconnection. Geophys. Res. Lett. 37 3106.CrossRefGoogle Scholar
Le, A., Egedal, J., Daughton, W., Fox, W. and Katz, N. 2009 Equations of state for collisionless guide-field reconnection. Phys. Rev. Lett. 102, 085001.CrossRefGoogle ScholarPubMed
Le, A., Egedal, J., Daughton, W., Karimabadi, H., Ohia, O. and Lukin, V. S. 2013 Regimes of the electron diffusion region in magnetic reconnection. Phys. Rev. Lett. 110, 135004.CrossRefGoogle ScholarPubMed
Lee, S. H., Zhang, H., Zong, Q.-G., Otto, A., Sibeck, D. G., Wang, Y., Glassmeier, K.-H., Daly, P. W. and Réme, H. 2013 Plasma and energetic particle behaviors during asymmetric magnetic reconnection at the magnetopause. J. Geophys. Res. 119, 16581672.CrossRefGoogle Scholar
Lefebvre, B., Chen, L.-J., Gekelman, W., Kintner, P., Pickett, J., Pribyl, P. and Vincena, S. 2011 Debye-scale solitary structures measured in a beam-plasma laboratory experiment. Nonlinear Process. Geophys. 18, 4147.CrossRefGoogle Scholar
Lembège, B. and Savoini, P. 2002 Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. (Space Phys.) 107, 1037.CrossRefGoogle Scholar
Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S. and Papadopoulos, K. 1981 Simulation of a perpendicular bow shock. Geophys. Res. Lett. 8, 12691272.CrossRefGoogle Scholar
Li, S.-Y., Deng, X.-H., Zhou, M., Yuan, Z.-G., Wang, J.-F., Lin, X., Lin, M.-H. and Fu, S. 2010 Geophysics, astronomy, and astrophysics: Cluster observation of electrostatic solitary waves around magnetic null point in thin current sheet. Chinese Phys. Lett. 27 (1), 019401.Google Scholar
Lin, R. P.et al. 1997 Observations of the solar wind, bow shock and upstream particles with the WIND 3D plasma instrument. Adv. Space Res. 20, 645654.CrossRefGoogle Scholar
Lin, Y. and Lee, L. C. 1994 Reconnection layer at the flank magnetopause in the presence of shear flow. Geophys. Res. Lett. 21, 855858.CrossRefGoogle Scholar
Lockwood, M. and Smith, F. M. 1992 The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. JGR 97, 1484114847.CrossRefGoogle Scholar
Lucek, E. A., Dunlop, M. W., Horbury, T. S., Balogh, A., Brown, P., Cargill, P., Carr, C., Fornacon, K. H., Georgescu, E. and Oddy, T. 2001 Cluster magnetic field observations in the magnetosheath: four-point measurements of mirror structures. Ann. Geophys. 19, 14211428.CrossRefGoogle Scholar
Lucek, E. A., Horbury, T. S., Dandouras, I. and RèMe, H. 2008 Cluster observations of the Earth's quasi-parallel bow shock. J. Geophys. Res. (Space Phys.) 113, 7.CrossRefGoogle Scholar
Lukin, V. S. and Linton, M. G. 2011 Three-dimensional magnetic reconnection through a moving magnetic null. Nonlinear Process. Geophys. 18 (6), 871882.CrossRefGoogle Scholar
Maksimovic, M. V., Pierrard, V. and Riley, P. 1997 Ulysses electron distributions fitted with kappa functions. Geophys. Res. Lett. 24, 1151.CrossRefGoogle Scholar
Maksimovic, M. V.et al. 2005 Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU. J. Geophys. Res. 110, 9104.CrossRefGoogle Scholar
Mangeney, A., Lacombe, C., Maksimovic, M., Samsonov, A. A., Cornilleau-Wehrlin, N., Harvey, C. C., Bosqued, J.-M. and Trávníček, P. 2006 Cluster observations in the magnetosheath – Part 1: anisotropies of the wave vector distribution of the turbulence at electron scales. Ann. Geophys. 24, 3507.CrossRefGoogle Scholar
Marsch, E. and Tu, C. Y. 1997 Intermittency, non-gaussian statistics and fractal scaling of mhd fluctuations in the solar wind. Nonlinear Proc. Geophys. 4, 101.CrossRefGoogle Scholar
Masters, A.et al. 2010 Cassini observations of a Kelvin-Helmholtz vortex in Saturn's outer magnetosphere. J. Geophys. Res. 115, 7225.CrossRefGoogle Scholar
Matsumoto, Y. and Hoshino, M. 2004 Onset of turbulence induced by a Kelvin-Helmholtz vortex. Geophys. Res. Lett. 31 2807.CrossRefGoogle Scholar
Matsumoto, Y. and Hoshino, M. 2006 Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111 5213.CrossRefGoogle Scholar
Matthaeus, W. H. 1982 Reconnection in two dimensions: localization of vorticity and current near the x-points. Geophys. Res. Lett. 9, 660663.CrossRefGoogle Scholar
Matthaeus, W. H., Dasso, S., Weygand, J. M., Milano, L. J., Smith, C. W. and Kivelson, M. J. 2005 Spatial correlation of the solar wind turbulence from two point measurements. Phys. Rev. Lett. 95, 231101231104.CrossRefGoogle ScholarPubMed
Matthaeus, W. H., Goldstein, M. L. and King, J. H. 1986a An interplanetary field ensemble at 1 AU. J. Geophys. Res. 91, 59.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. and Lantz, S. R. 1986b The alpha dynamo parameter and measurability of helicities in magnetohydrodynamic turbulence. Phys. Fluids 29, 1504.CrossRefGoogle Scholar
Matthaeus, W. H., Goldstein, M. L. and Roberts, D. A. 1990 Evidence for the presence of quasi-two-dimensional, nearly incompressible fluctuations in the solar wind. J. Geophys. Res. 95, 20673.Google Scholar
Matthaeus, W. H. and Lamkin, L. 1985 Rapid magnetic reconnection caused by finite amplitude fluctuations. Phys. Fluids 28, 303.CrossRefGoogle Scholar
Matthaeus, W. H. and Montgomery, D. 1980 Selective decay hypothesis at high mechanical and magnetic Reynolds numbers. Ann. New York Acad. Sci. 357, 203222.CrossRefGoogle Scholar
Menietti, J. D., Mutel, R. L., Santolik, O., Scudder, J. D., Christopher, I. W. and Cook, J. M. 2006 Striated drifting auroral kilometric radiation bursts: possible stimulation by upward traveling EMIC waves. J. Geophys. Res. (Space Phys.) 111, 4214.CrossRefGoogle Scholar
Menietti, J. D., Persoon, A. M., Pickett, J. S. and Gurnett, D. A. 2000 Statistical study of auroral kilometric radiation fine structure striations observed by Polar. J. Geophys. Res. (Space Phys.) 105, 18857.CrossRefGoogle Scholar
Menietti, J. D., Wong, H. K., Kurth, W. S., Gurnett, D. A., Granroth, L. J. and Groene, J. B. 1996 Discrete, stimulated auroral kilometric radiation observed in the Galileo and DE 1 wideband data. J. Geophys. Res. (Space Phys.) 101, 1067310680.CrossRefGoogle Scholar
Meyrand, R. and Galtier, S. 2010 A universal law for solar-wind turbulence at electron scales. Astrophys. J. 721 (2), 14211424.CrossRefGoogle Scholar
Meyrand, R. and Galtier, S. 2012 Spontaneous chiral symmetry breaking of hall magnetohydrodynamic turbulence. Phys. Rev. Lett. 109 (1), 194501.CrossRefGoogle ScholarPubMed
Miura, A. 1995 Dependence of the magnetopause Kelvin-Helmholtz instability on the orientation of the magnetosheath magnetic field. Geophys. Res. Lett. 22, 2993.CrossRefGoogle Scholar
Miura, A. and Pritchett, P. L. 1982 Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. J. Geophys. Res. 87, 7431.CrossRefGoogle Scholar
Mozer, F. S., Bale, S. D., McFadden, J. P. and Torbert, R. B. 2005 New features of electron diffusion regions observed at subsolar magnetic field reconnection sites. Geophys. Res. Lett. 32, 24102.CrossRefGoogle Scholar
Mutel, R., Gurnett, D. and Christopher, I. 2004 Spatial and temporal properties of AKR burst emission derived from Cluster WBD VLBI studies. Ann. Geophys. 22, 26252632.CrossRefGoogle Scholar
Mutel, R. L., Christopher, I. W. and Pickett, J. S. 2008 Cluster multispacecraft determination of AKR angular beaming. Geophys. Res. Lett. 35, 7104.CrossRefGoogle Scholar
Mutel, R. L., Gurnett, D. A., Christopher, I. W., Pickett, J. S. and Schlax, M. 2003 Locations of auroral kilometric radiation bursts inferred from multispacecraft wideband Cluster VLBI observations. 1: description of technique and initial results. J. Geophys. Res. (Space Phys.) 108, 1398.CrossRefGoogle Scholar
Mutel, R. L., Menietti, J. D., Christopher, I. W., Gurnett, D. A. and Cook, J. M. 2006 Striated auroral kilometric radiation emission: a remote tracer of ion solitary structures. J. Geophys. Res. (Space Phys.) 111 (A10), 10203.CrossRefGoogle Scholar
Mutel, R. L., Peterson, W. M., Jaeger, T. R. and Scudder, J. D. 2007 Dependence of cyclotron maser instability growth rates on electron velocity distributions and perturbation by solitary waves. J. Geophys. Res. 112 7211.CrossRefGoogle Scholar
Nakamura, R.et al. 2002 Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys. Res. Lett. 29, 1942.CrossRefGoogle Scholar
Nakamura, R., Retinò, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., Lucek, E. A., Dandouras, I., André, M. and Khotyaintsev, Y. 2009 Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Ann. Geophys. 27, 1743.CrossRefGoogle Scholar
Nakamura, T. K. M., Fujimoto, M. and Otto, A. 2006 Magnetic reconnection induced by weak Kelvin-Helmholtz instability and the formation of the low-latitude boundary layer. Geophys. Res. Lett. 33 14016.CrossRefGoogle Scholar
Nakamura, T. K. M., Fujimoto, M. and Otto, A. 2008 Structure of an MHD-scale Kelvin-Helmholtz vortex: two-dimensional two-fluid simulations including finite electron inertial effects. J. Geophys. Res. 113, A09 204.CrossRefGoogle Scholar
Nakamura, T. K. M., Hayashi, D., Fujimoto, M. and Shinohara, I. 2004 Decay of MHD-scale Kelvin-Helmholtz vortices mediated by parasitic electron dynamics. Phys. Rev. Lett. 92, 145001.CrossRefGoogle ScholarPubMed
Narita, Y., Glassmeier, K. H., Sahraoui, F., Goldstein, M. L. and Treumann, R. A. 2010 Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys. Rev. Lett. 104, 171101.CrossRefGoogle ScholarPubMed
Narita, Y., Glassmeier, K. H. and Treumann, R. A. 2006 Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. 97, 191101191104.CrossRefGoogle ScholarPubMed
Ness, N. F., Scearce, C. S. and Seek, J. B. 1964 Initial results of the Imp 1 magnetic field experiment. J. Geophys. Res. 69, 35313569.CrossRefGoogle Scholar
Neubauer, F. and Glassmeier, K-H. 1987 Use of an array of satellites as a wave telescope. J. Geophys. Res. 95, 1911519122.CrossRefGoogle Scholar
Nieves-Chinchilla, T. and Viñas, A. F. 2008 Solar wind electron distribution functions inside magnetic clouds. J. Geophys. Res. 113, 2105.CrossRefGoogle Scholar
Nunn, D., Omura, Y., Matsumoto, H., Nagano, I. and Yagitani, S. 1997 The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res. 102, 2708327097.CrossRefGoogle Scholar
Nykyri, K., Grison, B., Cargill, P. J., Lucek, E., Dandouras, I., Balogh, A., Cornilleau-Wehrlin, N. and Rème, H. 2006 Origin of the turbulent spectra in the high-alititude cups: Cluster spacecraft observations. Ann. Geophys. 24, 1057.CrossRefGoogle Scholar
Nykyri, K. and Otto, A. 2001 Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys. Res. Lett. 28, 3565.CrossRefGoogle Scholar
Ofman, L. and Thompson, B. J. 2011 SDO/AIA Oobservation of Kelvin–Helmholtz instability in the solar corona. Astrophys. J. Lett. 734 L11.CrossRefGoogle Scholar
Ohia, O., Egedal, J., Lukin, V. S., Daughton, W. and Le, A. 2012 Demonstration of anisotropic fluid closure capturing the kinetic structure of magnetic reconnectionl. Phy. Rev. Lett. 109, 115004.CrossRefGoogle Scholar
Ohtani, S., Brandt, P. C., Mitchell, D. G., Singer, H., Nosé, M., Reeves, G. D. and Mende, S. B. 2005 Storm-substorm relationship: variations of the hydrogen and oxygen energetic neutral atom intensities during storm-time substorms. J. Geophys. Res. 110, 7219.CrossRefGoogle Scholar
Øieroset, M., Lin, R. and Phan, T. D. 2002 Evidence for electron acceleration up to similar to 300 keV in the magnetic reconnection diffusion region of earth's magnetotail. Phy. Rev. Lett. 89, 195001.CrossRefGoogle Scholar
Osman, K. T. and Horbury, T. S. 2007 Multispacecraft measurement of anisotropic correlation functions in solar wind turbulence. Astrophys. J. Lett. 654, L103L106.CrossRefGoogle Scholar
Osman, K. T., Wan, M., Matthaeus, W. H., Breech, B. and Oughton, S. 2011 Directional alignment and non-Gaussian statistics in solar wind turbulence. Astrophys. J. 75, 741.Google Scholar
Otto, A. and Fairfield, D. H. 2000 Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations. J. Geophys. Res. 105, 21175.CrossRefGoogle Scholar
Owen, C. J., Taylor, M. G. G. T., Krauklis, I. C., Fazakerley, A. N., Dunlop, M. W. and Bosqued, J. M. 2004 Cluster observations of surface waves on the dawn flank magnetopause. Ann. Geophys. 22, 971983.CrossRefGoogle Scholar
Palermo, F., Faganello, M, Califano, E. and Pegorano, F. 2011 Kelvin-Helmholtz vortices and secondary instabilities in super-magnetosonic regimes. Ann. Geophys. 29, 11691178.CrossRefGoogle Scholar
Parks, G. K.et al. 2012 Entropy generation across Earth's collisionless bow shock. Phys. Rev. Lett. 108 (6), 061102.CrossRefGoogle ScholarPubMed
Parnell, C. E. 2007 Multiply connected source and null pairs. Sol. Phys. 242 (1–2), 2141.CrossRefGoogle Scholar
Parnell, C. E., Haynes, A. L. and Galsgaard, K. 2008 Recursive reconnection and magnetic skeletons. Astrophys. J. 675 (2), 16561665.CrossRefGoogle Scholar
Paschmann, G. 1983 Collisionless shocks. ESA J. 7, 357368.Google Scholar
Paschmann, G. 2008 Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. 35, 19109.CrossRefGoogle Scholar
Paschmann, G. and Daly, P. W. 1998 Analysis methods for multi-spacecraft data. ISSI Scientific Reports Series SR-001, ESA/ISSI, Vol. 1. ISBN 1608-280X, 1998. Analysis Methods for Multi-Spacecraft Data / Götz Paschmann and Patrick Daly (eds.). ISSI Scientific Reports Series 1. ISSI Scientific Reports Series, ESA/ISSI. ISBN 1608-280X.Google Scholar
Paschmann, G.et al. 2001 The electron drift instrument on Cluster: overview of first results. Ann. Geophys. 19 (1), 12731288.CrossRefGoogle Scholar
Paschmann, G., Schwartz, S. J., Escoubet, C. P. and Haaland, S. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series of ISSI, vol. 118. Berlin: Springer.CrossRefGoogle Scholar
Perri, S., Goldstein, M. L., Dorelli, J. C. and Sahraoui, F. 2012 Detection of small-scale structures in the dissipation regime of solar-wind turbulence. Phys. Rev. Lett. 109, 191101.CrossRefGoogle ScholarPubMed
Perri, S., Yordanova, E., Carbone, V., Veltri, P., Sorriso-Valvo, L., Bruno, R. and André, M. 2009 Magnetic turbulence in space plasmas: scale-dependent effects of anisotropy. J. Geophys. Res. 114, 2102.CrossRefGoogle Scholar
Perrone, D., Valentini, F., Servidio, S., Dalena, S., and Veltri, P. 2013 Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762, 99.CrossRefGoogle Scholar
Pickett, J., Chen, L., Kahler, S., Santolík, O., Gurnett, D., Tsurutani, B. and Balogh, A. 2004a Isolated electrostatic structures observed throughout the Cluster orbit: relationship to magnetic field strength. Ann. Geophys. 22, 25152523.CrossRefGoogle Scholar
Pickett, J. S.et al. 2005 On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath. Nonlinear Process. Geophys. 12, 181193.CrossRefGoogle Scholar
Pickett, J. S.et al. 2008 Furthering our understanding of electrostatic solitary waves through Cluster multispacecraft observations and theory. Adv. Space Res. 41, 16661676.CrossRefGoogle Scholar
Pickett, J. S.et al. 2011 On the propagation and modulation of electrostatic solitary waves observed near the magnetopause on Cluster. In: American Institute of Physics Conference Series (ed. Vassiliadis, D., Fung, S. F., Shao, X., Daglis, I. A. and Huba, J. D.), American Institute of Physics Conference Series, Vol. 1320, pp. 115124.Google Scholar
Pickett, J. S.et al. 2004b Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective. Nonlinear Process. Geophys. 11, 183196.CrossRefGoogle Scholar
Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Mühlhaüser, K.-H., Rosenbauer, H. and Schwenn, R. 1987a Characteristics of electron velocity distribution functions in the solar wind derived from Helios Plasma Experiment. J. Geophys. Res. 92, 10751092.CrossRefGoogle Scholar
Pilipp, W. G., Miggenrieder, H., Montgomery, M. D., Mühlhaüser, K.-H., Rosenbauer, H. and Schwenn, R. 1987b Unusual electron distribution functions in the solar wind derived from the helios plasma experiment: double-strahl distributions and distributions with an extremely anisotropic core. J. Geophys. Res. 92, 10931101.CrossRefGoogle Scholar
Pilipp, W. G., Miggenrieder, H., Mühlhaüser, K.-H., Rosenbauer, H., Schwenn, R. and Neubauer, F. M. 1987c Variations of electron velocity distribution functions in the solar wind. J. Geophys. Res. 92, 11031118.CrossRefGoogle Scholar
Pincon, J. L. and Lefeuvre, F. 1988 Characterization of a homogeneous field turbulence from multipoint measurements. COSPAR and SCOSTEP 8, 459.Google Scholar
Pinçon, J. L. and Lefeuvre, F. 1991 Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space. J. Geophys. Res. 96, 1789.CrossRefGoogle Scholar
Pinçon, J. L. and Lefeuvre, F. 1992 The application of the generalized Capon method to the analysis of a turbulent field in space plasma: experimental constraints. J. Atmos. Terr. Phys. 54, 12371247.CrossRefGoogle Scholar
Pinçon, J-L. and Motschmann, U. 1998 Multi-spacecraft filtering: general framework. In: Analysis Methods for Multi-Spacecraft Data (ed. Paschmann, G. and Daly, P. W.), Keplerlaan 1, 2200 AG Noordwijk, The Netherlands: ESA Publications Division, pp. 7991.Google Scholar
Platino, M., Inan, U. S., Bell, T. F., Pickett, J. S. and Canu, P. 2006 Rapidly moving sources of upper-band ELF/vlf chorus near the magnetic equator. J. Geophys. Res. 111, 09218.CrossRefGoogle Scholar
Podesta, J. J., Borovsky, J. E. and Gary, S. P. 2010 A kinetic Alfvén wave cascade subject to collisionless damping cannot reach electron scales in the solar wind at 1 AU. Astrophys. J. 712 (1), 685691.CrossRefGoogle Scholar
Pontin, D. I., Al-Hachami, A. K. and Galsgaard, K. 2011 Generalised models for torsional spine and fan magnetic reconnection. Astron. Astrophys. 533, 78.CrossRefGoogle Scholar
Pontin, D. I., Bhattacharjee, A. and Galsgaard, K. 2007 Current sheet formation and nonideal behavior at three-dimensional magnetic null points. Phys. Plasmas 14 (5), 2106.Google Scholar
Pontin, D. I. and Galsgaard, K. 2007 Current amplification and magnetic reconnection at a three-dimensional null point: physical characteristics. J. Geophys. Res. (Space Phys.) 112 (A3), 3103.CrossRefGoogle Scholar
Pontin, D. I., Hornig, G. and Priest, E. R. 2004 Kinematic reconnection at a magnetic null point: spine-aligned current. Geophys. Fluid Dyn. 98 (5), 407428.CrossRefGoogle Scholar
Pontin, D. I., Hornig, G. and Priest, E. R. 2005 Kinematic reconnection at a magnetic null point: fan-aligned current. Geophys. Astrophys. Fluid Dyn. 99 (1), 7793.CrossRefGoogle Scholar
Pontin, D. I., Priest, E. R. and Galsgaard, K. 2013 On the nature of reconnection at a solar coronal null point above a separatrix dome. Astrophys. J. 774 (2)154.CrossRefGoogle Scholar
Pope, S. A., Balikhin, M. A., Zhang, T. L., Fedorov, A. O., Gedalin, M. and Barabash, S. 2009 Giant vortices lead to ion escape from Venus and re-distribution of plasma in the ionosphere. Geophys. Res. Lett. 36, 7202.CrossRefGoogle Scholar
Pottelette, R., Treumann, R. A. and Berthomier, M. 2001 Auroral plasma turbulence and the cause of auroral kilometric radiation fine structure. J. Geophys. Res. (Space Phys.) 106, 84658476.CrossRefGoogle Scholar
Priest, E. R. and Pontin, D. I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16, 2101.CrossRefGoogle Scholar
Priest, E. R. and Titov, V. S. 1996 Magnetic reconnection at three-dimensional null points. Phil. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 354 (1721), 29512992.Google Scholar
Pritchett, P. L., Strangeway, R. J., Ergun, R. E. and Carlson, C. W. 2002 Generation and propagation of cyclotron maser emissions in the finite auroral kilometric radiation source cavity. J. Geophys. Res. (Space Phys.) 107, 1437.CrossRefGoogle Scholar
Rankin, D., Frycz, P., Samson, J. C. and Tikhonchuk, V. T. 1997 Shear flow vortices in magnetospheric plasmas. Phys. Plasmas 4, 829.CrossRefGoogle Scholar
Reme, H.et al. 2001 First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19 (1), 13031354.CrossRefGoogle Scholar
Rème, H.et al. 1997 The CLUSTER ion spectrometry (CIS) experiment. Space Sci. Rev. 79, 303.CrossRefGoogle Scholar
Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M. and Owen, C. J. 2007 In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys. 3, 236.CrossRefGoogle Scholar
Ricci, P., Brackbill, J. U., Daughton, W. and Lapenta, G. 2004 Influence of the lower hybrid drift instability on the onset of magnetic reconnection. Phys. Plasma 11, 4489.CrossRefGoogle Scholar
Robert, P., Roux, A., Harvey, C. C., Dunlop, M. W., Daly, P. W. and Glassmeier, K-H 1998 Tetrahedron geometry factors. In: Analysis Methods for Multi-Spacecraft Data (ed. Paschmann, G. and Daly, P. W.), Keplerlaan 1, 2200 AG Noordwijk, The Netherlands: ESA Publications Division, pp. 323348.Google Scholar
Rosenbauer, H., Miggenrieder, H., Montgomery, M. D. and Schwenn, R. 1976 Preliminary results of the helios plasma experiment. In: Physics of Solar Planetary Environments (ed. Williams, D. J.), Washington DC, USA: American Geophysical Union, p. 319.Google Scholar
Rosenbauer, H., Schwenn, R., Marsch, E., Meyer, B., H, M., Montgomery, M. D., Muhlhausser, K.-H., Pilipp, W., Voges, W. and Zink, S. M. 1977 A survey on initial results of the helios plasma experiment. J. Geophys. 42, 561580.Google Scholar
Ruffolo, D., Matthaeus, W. H. and Chuychai, P. 2004 Separation of magnetic field lines in two-component turbulence. Astrophys. J. 614, 420434.CrossRefGoogle Scholar
Runov, A.et al. 2011a Dipolarization fronts in the magnetotail plasma sheet. Plan. Space Sci. 59, 517525.CrossRefGoogle Scholar
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K.-H. and Auster, U. 2009 Themis observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, 14106.CrossRefGoogle Scholar
Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.-J., Li, S., Plaschke, F. and Bonnell, J. 2011b A themis multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. (Space Phys.) 116, 5216.CrossRefGoogle Scholar
Runov, A.et al. 2003 Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. 30, 1579.CrossRefGoogle Scholar
Sahraoui, F. 2008 Diagnosis of magnetic structures and intermittency in space-plasma turbulence using the technique of surrogate data. Phys. Rev. E 78, 26402.CrossRefGoogle ScholarPubMed
Sahraoui, F., Belmont, G. and Goldstein, M. L. 2012 New insight into short-wavelength solar wind fluctuations from Vlasov theory. Astrophys. J. 748 (2), 100.CrossRefGoogle Scholar
Sahraoui, F., Belmont, G., Goldstein, M. L. and Rezeau, L. 2010a Limitations of multispacecraft data techniques in measuring wave number spectra of space plasma turbulence. J. Geophys. Res. (Space Phys.) 115, 4206.CrossRefGoogle Scholar
Sahraoui, F., Belmont, G., Pinçon, J. L., Rezeau, L., Balogh, A., Robert, P. and Cornilleau-Wehrlin, N. 2004 Magnetic turbulent spectra in the magnetosheath: new insights. Ann. Geophys. 22, 2283.CrossRefGoogle Scholar
Sahraoui, F., Belmont, G., Rezeau, L., Cornilleau-Wehrlin, N., Pinçcon, J. L. and Balogh, A. 2006 Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Phys. Rev. Lett. 96, 75002.CrossRefGoogle ScholarPubMed
Sahraoui, F. and Goldstein, M. 2010 Structures and intermittency in small scales solar wind turbulence. AIP Conf. Proc.: 12th Int. Solar Wind Conf., Vol. 1216, 140.Google Scholar
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P. and Rezeau, L. 2010b Three-dimensional anisotropic k-spectra of turbulence at sub-proton scales in the solar wind. Phys. Rev. Lett. 105, 131101131104.CrossRefGoogle Scholar
Sahraoui, F., Goldstein, M. L., Robert, P. and Khotyaintsev, Y. V. 2009 Evidence of a cascade and dissipation of solar-wind turbulence at the e Electron gyroscale. Phy. Rev. Lett. 102 (23), 231102.CrossRefGoogle Scholar
Sahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Retinò, A., Robert, P. and De Patoul, J. 2013 Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777 (1), 15.CrossRefGoogle Scholar
Sahraoui, F.et al. 2003 Ulf wave identification in the magnetosheath: the k-filtering technique applied to cluster ii data. J. Geophys. Res. (Space Phys.) 108, 1335.CrossRefGoogle Scholar
Salem, C., Hubert, D., C.Lacombe, Bale, S. D., Mangeney, A., Larson, D. E. and Lin, R. P. 2003 Electron properties and Coulomb collisions in the solar wind at 1 AU: wind observations. Astrophys. J. 585, 1147.CrossRefGoogle Scholar
Salem, C. S., Howes, G. G., Sundkvist, D., Bale, S. D., Chaston, C. C., Chen, C. H. K. and Mozer, F. S. 2012 Identification of kinetic Alfvén wave turbulence in the solar wind. Astrophys. J. Lett. 745, L9.CrossRefGoogle Scholar
Santolík, O. 2008 New results of investigations of whistler-mode chorus emissions. Nonlinear Process. Geophys. 15, 621630.CrossRefGoogle Scholar
Santolík, O., Chum, J., Parrot, M., Gurnett, D. A., Pickett, J. S. and Cornilleau-Wehrlin, N. 2006 Propagation of whistler mode chorus to low altitudes: spacecraft observations of structured ELF hiss. J. Geophys. Res. (Space Phys.) 111 (A10), 10208.CrossRefGoogle Scholar
Santolík, O. and Gurnett, D. A. 2003 Transverse dimensions of chorus in the source region. Geophys. Res. Lett. 30, 1031.CrossRefGoogle Scholar
Santolik, O., Gurnett, D. A., Pickett, J. S., Chum, J. and Cornilleau-Wehrlin, N. 2009 Oblique propagation of whistler-mode waves in the chorus source region. J. Geophys. Res. 114 A00F03.CrossRefGoogle Scholar
Santolík, O.et al. 2010 Wave-particle interactions in the equatorial source region of whistler-mode emissions. J. Geophys. Res. (Space Phys.) 115, A00 F16.CrossRefGoogle Scholar
Santolik, O., Gurnett, D. A., Pickett, J. S., Parrot, M. and Cornilleau-Wehrlin, N. 2003 Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108 1278.CrossRefGoogle Scholar
Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M. and Cornilleau-Wehrlin, N. 2004 A microscopic and nanoscopic view of storm-time chorus on 31 march 2001. Geophys. Res. Lett. 31 (2), L02801.CrossRefGoogle Scholar
Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M. and Cornilleau-Wehrlin, N. 2005 Central position of the source region of storm-time chorus. Planet. Space Sci. 53, 299305.CrossRefGoogle Scholar
Santolik, O., Macusova, E., Titova, E. E., Kozelov, B. V., Gurnett, D. A., Pickett, J. S., Trakhtengerts, V. Y. and Demekhov, A. G. 2008 Frequencies of wave packets of whistler-mode chorus inside its source region: a case study. Ann. Geophys. 26, 16651670.CrossRefGoogle Scholar
Sauer, K. and Sydora, R. D. 2010 Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations. AG 28, 13171325.Google Scholar
Schaffner, D. A., Lukin, V. S., Wan, A. and Brown, M. R. 2014 Turbulence analysis of an experimental flux-rope plasma. Plasma Phys. Contol. Fusion 56, 064003.CrossRefGoogle Scholar
Schmid, D., Volwerk, M., Nakamura, R., Baumjohann, W. and Heyn, M. 2012 A statistical and event study of magnetotail dipolarization fronts. Ann. Geophys. 29, 15371547.CrossRefGoogle Scholar
Scholer, M., Shinohara, I. and Matsukiyo, S. 2003 Quasi-perpendicular shocks: length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res. (Space Phys.) 108, 1014.CrossRefGoogle Scholar
Scholer, M.et al. 2005 Cluster at the bow shock: status and outlook. Space Sci. Rev. 118, 223227.CrossRefGoogle Scholar
Schriver, D. 2010 Generation of whistler mode emissions in the inner magnetosphere: an event study. J. Geophys. Res. (Space Phys.) 115, A00 F17.CrossRefGoogle Scholar
Schwartz, S. J., Henley, E., Mitchell, J. and Krasnoselskikh, V. 2011 Electron temperature gradient scale at collisionless shocks. Phys. Rev. Lett. 107 (2), 215002.CrossRefGoogle ScholarPubMed
Sckopke, N. 1995 Ion heating at the Earth's quasi-perpendicular bow shock. Adv. Space Res. 15, 261269.CrossRefGoogle Scholar
Scudder, J. and Daughton, W. 2008 ‘Illuminating' electron diffusion regions of collisionless magnetic reconnection using electron agyrotropy. J. Geophys. Res. (Space Phys.) 113, 6222.CrossRefGoogle Scholar
Scudder, J. D., Holdaway, R. D., Daughton, W. S., Karimabadi, H., Roytershteyn, V., Russell, C. T. and Lopez, J. Y. 2012 First resolved observations of the demagnetized electron-diffusion region of an astrophysical magnetic-reconnection site. Phys. Rev. Lett. 108, 225005.CrossRefGoogle ScholarPubMed
Scudder, J. D., Mozer, F. S., Maynard, N. C. and Russell, C. T. 2002 Fingerprints of collisionless reconnection at the separator, I, Ambipolar-Hall signatures. J. Geophys. Res. 107, 1294.CrossRefGoogle Scholar
Scudder, J. D., Puhl-Quinn, P. A., Mozer, F. S., Ogilvie, K. W. and Russell, C. T. 1999 Generalized walén tests through alfvén waves and rotational discontinuities using electron flow velocities. J. Geophys. Res. 104, 1981719834.CrossRefGoogle Scholar
Segalini, A., Örlü, R., Schlatter, P., Rüedi, J-D and Talamelli, A. 2011 A method to estimate turbulence intensity and transverse Taylor microscale in turbulent flows from spatially averaged hot-wire data. Exp. Fluids 51, 693700.CrossRefGoogle Scholar
Sergeev, V., Angelopoulos, V., Apatenkov, S., Bonnell, J., Ergun, R., Nakamura, R., McFadden, J., Larson, D. and Runov, A. 2009 Kinetic structure of the sharp injection/dipolarization front in the flow-braking region. Geophys. Res. Lett. 36, 21105.CrossRefGoogle Scholar
Servidio, S., Matthaeus, W. H. and Dmitruk, P. 2008 Depression of nonlinearity in decaying isotropic MHD turbulence. Phys. Rev. Lett. 100, 095005.CrossRefGoogle ScholarPubMed
Servidio, S., Matthaeus, W. H., Shay, M. A., Cassak, P. A. and Dmitruk, P. 2009 Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 115003.CrossRefGoogle ScholarPubMed
Servidio, S., Valentini, F., Califano, F. and Veltri, P. 2012 Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108, 045001.CrossRefGoogle ScholarPubMed
Sitnov, M. I., Swisdak, M. and Divin, A. V. 2009 Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res. 114, 4202.CrossRefGoogle Scholar
Sonnerup, B. Ü. Ö. and Scheible, M. 1998 Minimum and maximum variance analysis. In: Analysis Methods for Multi-Spacecraft Data (ed. Paschmann, G. and Daly, P. W.), Keplerlaan 1, 2200 AG Noordwijk, The Netherlands: ESA Publications Division, pp. 185220.Google Scholar
Sorriso-Valvo, L., Carbone, V., Veltri, P., Consolini, G. and Bruno, R. 1999 Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophys. Res. Lett. 26, 18011804.CrossRefGoogle Scholar
Stasiewicz, K. 2004 Reinterpretation of mirror modes as trains of slow magnetosonic solitons. Geophys. Res. Lett. 31, 21804.CrossRefGoogle Scholar
Stasiewicz, K., Shukla, P. K., Gustafsson, G., Buchert, S., Lavraud, B., Thidé, B. and Klos, Z. 2003 Slow magnetosonic solitons detected by the Cluster spacecraft. Phys. Rev. Lett. 90 (8), 085002.CrossRefGoogle ScholarPubMed
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2005 Voyager 1 explores the termination shock region and the heliosheath beyond. Science, Dordrecht 309, 20172020.CrossRefGoogle ScholarPubMed
Sundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M. and Solomon, S. C. 2012 MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause. J. Geophys. Res. 117, 4216.CrossRefGoogle Scholar
Sundkvist, D., Krasnoselskikh, V., Shukla, P. K., Vaivads, A., Andr'e, M., Buchert, S. and Rème, H. 2005 In situ multi-satellite detection of coherent vortices as a manifestation of alfvénic turbulence. Nature 436, 825828.CrossRefGoogle ScholarPubMed
Sundkvist, D., Retinó, A., Vaivads, A. and Bale, S. D. 2007 Dissipation in turbulent plasma due to reconnection in thin current sheets. Phys. Rev. Lett. 99, 025004.CrossRefGoogle ScholarPubMed
Tajima, T., Horton, W., Morrison, P. J., Schutkeker, J., Kamimura, T., Mima, K. and Abe, Y. 1991 Instabilites and vortex dynameics in shear flow of magnitized plasmas. Phys. Fluids B 3, 938954.CrossRefGoogle Scholar
Taylor, G. I. 1935 Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421444.CrossRefGoogle Scholar
Taylor, G. I. 1938 The spectrum of turbulence. In: Proc. Royal Society of London Ser. A, pp. 476490.Google Scholar
Taylor, M. G. G. T., Escoubet, C. P., Laakso, H., Masson, A. and Goldstein, M. L. 2010 The Cluster Mission: Space Plasma in Three Dimensions. Springer, Dordrecht, pp. 309330.Google Scholar
Taylor, M. G. G. T. and Lavraud, B. 2008 Observation of three distinct ion populations at the Kelvin-Helmholtz-unstable magnetopause. Ann. Geophys. 26, 15591566.CrossRefGoogle Scholar
Temerin, M. K., Cerny, W., Lotko, S. and Mozer, F. 1982 Observations of double layers and solitary waves in the auroral plasma. Phys. Rev. Lett. 48, 11751179.CrossRefGoogle Scholar
Tenerani, A., Le Contel, O., Califano, F., Pegoraro, F., Robert, P., Cornilleau-Wehrlin, N. and Sauvaud, J. A. 2012 Coupling between whistler waves and ion-scale solitary waves: Cluster measurements in the magnetotail during a substorm. Phys. Rev. Lett. 109 (15), 155005.CrossRefGoogle ScholarPubMed
Tessein, J. A., Matthaeus, W. H., Wan, M., Osman, K. T., Ruffolo, D. and Giacalone, J. 2013 Association of suprathermal particles with coherent structures and shocks. Astrophys. J. 776, L8.CrossRefGoogle Scholar
Thomsen, M. F. 1988 Multi-spacecraft observations of collisionless shocks. Adv. Space Res. 8, 157166.CrossRefGoogle Scholar
Titov, V. S. and Hornig, G. 2000 Magnetohydrodynamic flows sustaining stationary magnetic nulls. Phys.Plasmas 7 (9), 35423550.CrossRefGoogle Scholar
Titova, E., Demekhov, A., Kozelov, B., Santolík, O., Macúšová, E., Rauch, J.-L., Trotignon, J.-G., Gurnett, D. and Pickett, J. 2012 Properties of the magnetospheric backward wave oscillator inferred from cluster measurements of vlf chorus elements. J. Geophys. Res. (Space Phys.) 117, 8210.CrossRefGoogle Scholar
Tjulin, A., Lucek, E. A. and Dandouras, I. 2008 Wave activity inside hot flow anomaly cavities. J. Geophys. Res. (Space Phys.) 113 (A), 8113.CrossRefGoogle Scholar
Tjulin, A., Pinçon, J. L., Sahraoui, F., André, M. and Cornilleau-Wehrlin, N. 2005 The k-filtering technique applied to wave electric and magnetic field measurements from the Cluster satellites. J. Geophys. Res. 110, 11224.CrossRefGoogle Scholar
Torkar, K.et al. 2001 Active spacecraft potential control for Cluster – implementation and first results. Ann. Geophys. 19 (1), 12891302.CrossRefGoogle Scholar
Trakhtengerts, V. Y.et al. 2007 Formation of VLF chorus frequency spectrum: Cluster data and comparison with the backward wave oscillator model. Geophys. Res. Lett. 34, 2104.CrossRefGoogle Scholar
Treumann, R. A. and Jaroschek, C. H. 2008 Planetary bow shocks. ArXIV [astro-ph] 0808.1701, 34.Google Scholar
Trines, R., Bingham, R., Dunlop, M. W., Vaivads, A., Davies, J. A., Mendonça, J. T., Silva, L. O. and Shukla, P. K. 2007 Spontaneous generation of self-organized solitary wave structures at Earth's magnetopause. Phys. Rev. Lett. 99 (20), 205006.CrossRefGoogle ScholarPubMed
Umeda, T., Ashour-Abdalla, M., Pickett, J. S. and Goldstein, M. L. 2012 Vlasov simulation of electrostatic solitary structures in multi-component plasmas. J. Geophys. Res. (Space Phys.) 117, 5223.CrossRefGoogle Scholar
Vaivads, A. A., Retinò, A. and André, M. 2006 Microphysics of magnetic reconnection. Space Sci. Rev. 122, 19.CrossRefGoogle Scholar
Vasquez, B. J., Abramenko, V. I., Haggerty, D. K. and Smith, C. W. 2007 Numerous small magnetic field discontinuities of bartels rotation 2286 and the potential role of alfvénic turbulence. J. Geophys. Res. 112, 11102.CrossRefGoogle Scholar
Veltri, P. 1999 Mhd turbulence in the solar wind: self-similarity, intermittency and coherent structures. Plasma Phys. Contol. Fusion 41, A787.CrossRefGoogle Scholar
Veltri, P. and Mangeney, A. 1999 Scaling laws and intermittent structures in solar wind mhd turbulence. In: AIP Conf. Proc., Nantucket, Massachusetts (USA), p. 543.CrossRefGoogle Scholar
Viberg, H., Khotyaintsev, Yu. V., Vaivads, A., André, M., Fu, H. S. and Cornilleau-Wehrlin, N. 2014 Whistler mode waves at magnetotail dipolarization fronts. J. Geophys. Res. (Space Phys.) 119, 26052611.CrossRefGoogle Scholar
Viberg, H., Khotyaintsev, Y. V., Vaivads, A., André, M. and Pickett, J. S. 2013 Mapping HF waves in the reconnection diffusion region. Geophys. Res. Lett. 40, 10321037.CrossRefGoogle Scholar
Viñas, A. F. and Gurgiolo, C. 2009 Spherical harmonic analysis of particle velocity distribution function: comparison of moments and anisotropies using Cluster data. J. Geophys. Res. 114, 1105.CrossRefGoogle Scholar
Viñas, A. F., Gurgiolo, C., Nieves-Chinchilla, T., Gary, S. P. and Goldstein, M. L. 2010 Whistler waves driven by anisotropic 3D strahl velocity distributions in the solar wind: Cluster observations. In: AIP Proc. Solar Wind 12 Conf. (ed. Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M. and Pantellini, F.), New York, USA: American Institute of Physics, p. 265.Google Scholar
Volwerk, M., Glassmeier, K.-H., Nakamura, R., Takada, T., Baumjohann, W., Klecker, B., Réme, H., Zhang, T. L., Lucek, E. and Carr, C. M. 2007 Flow burst-induced Kelvin-Helmholtz waves in the terrestrial magnetotail. Geophys. Res. Lett. 34 10102.CrossRefGoogle Scholar
Walker, R. J., Fukazawa, K., Ogino, T. and Morozoff, D. 2011a A simulation study of Kelvin-Helmholtz waves at Saturn's magnetopause. J. Geophys. Res. 116, 3203.CrossRefGoogle Scholar
Walker, S. N., Balikhin, M. A., Zhang, T. L., Gedalin, M. E., Pope, S. A., Dimmock, A. P. and Fedorov, A. O. 2011b Unusual nonlinear waves in the venusian magnetosheath. J. Geophys. Res. (Space Phys.) 116, 1215.CrossRefGoogle Scholar
Wan, M., Matthaeus, W. H., Karimabadi, H., Roytershteyn, V., Shay, M., Wu, P., Daughton, W., Loring, B. and Chapman, S. C. 2012 Intermittent dissipation at kinetic scales in collisionless plasma turbulence. Phys. Rev. Lett. 109, 195001.CrossRefGoogle ScholarPubMed
Wang, R., Lu, Q., Du, A. and Wang, S. 2010 In Situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons. Phys. Rev. Lett. 104, 175003.CrossRefGoogle Scholar
Wang, X., Tu, C., He, J., Marschand, E. and Wang, L. 2013 On intermittent turbulence heating of the solar wind: differences between tangential and rotational discontinuities. Astrophys. J. Lett. 772, L14.CrossRefGoogle Scholar
Wendel, D. E. and Adrian, M. L. 2013 Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath. J. Geophys. Res. (Space Phys.) 118 (4), 15711588.CrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., Dasso, S. and Kivelson, M. G. 2011 Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed. J. Geophys. Res. 116, 8102.CrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G., Kistler, L. M. and Mouikis, C. 2009 Anisotropy of the Taylor scale and the correlation scale in plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 114, 7213.CrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., Dasso, S., Kivelson, M. G. and Walker, R. J. 2007 Taylor scale and effective magnetic Reynolds number determination from plasma sheet and solar wind magnetic field fluctuations. J. Geophys. Res. 112, 10201.CrossRefGoogle Scholar
Weygand, J. M., Matthaeus, W. H., El-Alaoui, M., Dasso, S. and Kivelson, M. G. 2010 Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity. J. Geophys. Res. 115, 12250.CrossRefGoogle Scholar
Wilken, B.et al. 2001 First results from the RAPID imaging energetic particle spectrometer on board Cluster. Ann. Geophys. 19 (1), 13551366.CrossRefGoogle Scholar
Wilkinson, W. P. 2003 The Earth's quasi-parallel bow shock: Review of observations and perspectives for Cluster. Plan. Space Sci. 51, 629647.CrossRefGoogle Scholar
Williams, J. D., Chen, L.-J., Kurth, W. S., Gurnett, D. A. and Dougherty, M. K. 2006 Electrostatic solitary structures observed at Saturn. Geophys. Res. Lett. 33, 6103.CrossRefGoogle Scholar
Wolf, R. A., Kumar, V., Toffoletto, F. R., Erickson, G. M., Savoie, A. M., Chen, C. X. and Lemon, C. L. 2006 Estimating local plasma sheet PV5/3 from single spacecraft observations. J. Geophys. Res. 111, 12218.CrossRefGoogle Scholar
Wu, C. S. and Lee, L. C. 1979 A theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621626.CrossRefGoogle Scholar
Wu, C. S. and Yoon, P. H. 1990 Kinetic hydromagnetic instabilities due to a spherical shell distribution of pickup ions. J. Geophys. Res. 95, 1027310278.CrossRefGoogle Scholar
Wu, P., Perri, S., Osman, K., Wan, M., Matthaeus, W. H., Shay, M. A., Goldstein, M. L., Karimabadi, H., and Chapman, S. 2013 Intermittent heating in solar wind and kinetic simulations. Astrophys. J. 763, L30.CrossRefGoogle Scholar
Wygant, J. R.et al. 2005 Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region. J. Geophys. Res. 110, 9206.CrossRefGoogle Scholar
Wyper, P. and Jain, R. 2010 Torsional magnetic reconnection at three dimensional null points: a phenomenological study. Phys. Plasmas 17, 2902.Google Scholar
Xiao, C. J.et al. 2007 Satellite observations of separator-line geometry of three-dimensional magnetic reconnection. Nature Phys. 3, 609613.CrossRefGoogle Scholar
Xiao, C. J.et al. 2006 In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail. Nature Phys. 2, 478483.CrossRefGoogle Scholar
Yordanova, E., Vaivads, A., André, M., Buchert, S. C. and Vörös, Z. 2008 Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the cluster spacecraft. Phys. Rev. Lett. 100, 205003.CrossRefGoogle ScholarPubMed
Zhou, M., Ashour-Abdalla, M., Deng, X., Schriver, D., El-Alaoui, M. and Pang, Y. 2009 THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-earth magnetotail. Geophys. Res. Lett. 36, 20107.CrossRefGoogle Scholar
Zhou, X.-Z., Angelopoulos, V., Sergeev, V. A. and Runov, A. 2010 Accelerated ions ahead of earthward propagating dipolarization fronts. J. Geophys. Res. 115, 103.CrossRefGoogle Scholar