Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T21:03:59.408Z Has data issue: false hasContentIssue false

Multi-dimensional instability of solitary waves in ultra-relativistic degenerate dense magnetized plasma

Published online by Cambridge University Press:  26 January 2011

A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected]) RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr-Universität Bochum, D-44780 Bochum, Germany
S. S. DUHA
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh ([email protected])
P. K. SHUKLA
Affiliation:
RUB International Chair, International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract

The basic features and multi-dimensional instability of electrostatic solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma have been investigated by the reductive perturbation method and the small-k perturbation expansion technique. The Zakharov–Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analysed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, have been briefly discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Garcia-Berro, E., Torres, S., Althaus, L. G., Renedo, I., Lorén-Aguilar, P., Córsico, A. H., Rohrmann, R. D., Salaris, M. and Isern, J. 2010 Nature 465, 194.CrossRefGoogle Scholar
[2]Shapiro, S. L. and Teukolsky, S. A. 1983 Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact objects. New York: John Wiley and Sons; Balberg, S. and Shapiro, S. L. 2000 arXiv: asto-ph/0004317.CrossRefGoogle Scholar
[3]Koester, D. and Chanmugam, G. 1990 Rep. Prog. Phys. 53, 837.CrossRefGoogle Scholar
[4]Chandrasekhar, S. 1935 Mon. Not. R. Astron. Soc. 170, 405.Google Scholar
[5]Chandrasekhar, S. 1931 Astrophys. J. 74, 81; 1931 Phi. Mag. 11, 592.CrossRefGoogle Scholar
[6]Stenfo, L., Shukla, P. K. and Marklund, M. 2006 Europhys. Lett. 74, 844 (2006); Shukla, P. K. 2006 Phys. Lett. A 352, 242.CrossRefGoogle Scholar
[7]Shukla, P. K. and Stenfo, L., 2006 Phys. Lett. A 355, 378.CrossRefGoogle Scholar
[8]Shukla, P. K. and Eliasson, B. 2006 Phys. Rev. Lett. 96, 245 001; 2007 ibid. 99, 096 401.CrossRefGoogle Scholar
[9]Shaikh, D. and Shukla, P. K. 2007 Phys. Rev. Lett. 99, 125 002; Brodin, G. and Marklund, M. 2007 New J. Phys. 9, 227.CrossRefGoogle Scholar
[10]Brodin, G. and Marklund, M. 2007 Phys. Plasmas 14, 112 107.CrossRefGoogle Scholar
[11]Marklund, M. and Brodin, G. 2007 Phys. Rev. Lett. 98, 025 001; Shukla, P. K. 2009 Nature Phys. 5, 92.CrossRefGoogle Scholar
[12]Marklund, M., Eiasson, B. and Shukla, P. K. 2007 Phys. Rev. E 76, 067 401.Google Scholar
[13]Masood, W., Eiasson, B. and Shukla, P. K. 2010 Phys. Rev. E 81, 066 401.Google Scholar
[14]Shukla, P. K. and Eliasson, B. 2010 Phys. Usp. 53, 51.CrossRefGoogle Scholar
[15]Manfredi, G. 2005 Fields Inst. Commun. 46, 263.Google Scholar
[16]Hass, F. 2007 Phys. Plasmas 13, 042 309.CrossRefGoogle Scholar
[17]Misra, A. and Samanta, S. 2008 Phys. Plasmas 15, 123 307.Google Scholar
[18]Mamun, A. A. and Shukla, P. K. 2010 Phys. Lett. A 324, 4238.CrossRefGoogle Scholar
[19]Mamun, A. A. and Shukla, P. K. 2010 Phys. Plasmas 17, 104 504.CrossRefGoogle Scholar
[20]Shukla, P. K. and Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
[21]Lee, L. C. and Kan, J. R. 1981 Phys. Fluids 24, 430.CrossRefGoogle Scholar
[22]Witt, E. and Lotko, W. 1983 Phys. Fluids 26, 2176.CrossRefGoogle Scholar
[23]Rowlands, G. 1969 J. Plasma Phys. 3, 567.CrossRefGoogle Scholar
[24]Infeld, E. 1972 J. Plasma Phys. 8, 105.CrossRefGoogle Scholar
[25]Infeld, E. 1985 J. Plasma Phys. 33, 171.CrossRefGoogle Scholar
[26]Infeld, E. and Rowlands, G. 1973 J. Plasma Phys. 10, 293.CrossRefGoogle Scholar
[27]Laedke, E. W. and Spatschek, K. H. 1982 J. Plasma Phys. 28, 469.CrossRefGoogle Scholar
[28]Mamun, A. A. and Cairns, R. A. 1996 J. Plasma Phys. 56, 175.CrossRefGoogle Scholar