Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T07:38:25.579Z Has data issue: false hasContentIssue false

Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions

Published online by Cambridge University Press:  01 November 2016

B. Olmi*
Affiliation:
Dipartimento di Fisica ed Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy INFN Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy
L. Del Zanna
Affiliation:
Dipartimento di Fisica ed Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy INFN Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy
E. Amato
Affiliation:
Dipartimento di Fisica ed Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
N. Bucciantini
Affiliation:
Dipartimento di Fisica ed Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy INFN Sezione di Firenze, Via G. Sansone 1, 50019 Sesto F.no (Firenze), Italy
A. Mignone
Affiliation:
Dipartimento di Fisica Generale ‘Amedeo Avogadro’ Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
*
Email address for correspondence: [email protected]

Abstract

In the last decade, the relativistic magnetohydrodynamic (MHD) modelling of pulsar wind nebulae, and of the Crab nebula in particular, has been highly successful, with many of the observed dynamical and emission properties reproduced down to the finest detail. Here, we critically discuss the results of some of the most recent studies: namely the investigation of the origin of the radio emitting particles and the quest for the acceleration sites of particles of different energies along the termination shock, by using wisp motions as a diagnostic tool; the study of the magnetic dissipation process in high magnetization nebulae by means of new long-term three-dimensional simulations of the pulsar wind nebula evolution; the investigation of the relativistic tearing instability in thinning current sheets, leading to fast reconnection events that might be at the origin of the Crab nebula gamma-ray flares.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdo, A. A. et al. 2011 Gamma-ray flares from the crab nebula. Science 331, 739.Google Scholar
Adriani, O. et al. 2009 An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607609.Google Scholar
Aguilar, M. et al. 2013 First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110 (14), 141102.Google Scholar
Amato, E. 2014 The theory of pulsar wind nebulae. Intl J. Mod. Phys. 28, 60160.Google Scholar
Amato, E. & Arons, J. 2006 Heating and nonthermal particle acceleration in relativistic, transverse magnetosonic shock waves in proton-electron-positron plasmas. Astrophys. J. 653, 325338.Google Scholar
Arons, J. 2012 Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341367.Google Scholar
Atoyan, A. M. & Aharonian, F. A. 1996 On the mechanisms of gamma radiation in the Crab Nebula. Mon. Not. R. Astron. Soc. 278, 525541.Google Scholar
Bandiera, R., Neri, R. & Cesaroni, R. 2002 The Crab Nebula at 1.3 mm. Evidence for a new synchrotron component. Astron. Astrophys. 386, 10441054.Google Scholar
Becerra, J., Buehler, R. & Hays, E. 2014 Fermi LAT detection of enhanced gamma-ray emission from the Crab Nebula region. The Astronomer’s Telegram 6401, 1.Google Scholar
Begelman, M. C. & Li, Z.-Y. 1992 An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble. Astrophys. J. 397, 187195.Google Scholar
van den Bergh, S. & Pritchet, C. J. 1989 The Crab synchrotron Nebula at 0.5 arcsec resolution. Astrophys. J. Lett. 338, L69.Google Scholar
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. 2009 Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability. Phys. Plasmas 16 (11), 112102.Google Scholar
Bietenholz, M. F., Hester, J. J., Frail, D. A. & Bartel, N. 2004 The Crab Nebula’s wisps in radio and optical. Astrophys. J. 615, 794804.Google Scholar
Bietenholz, M. F., Yuan, Y., Buehler, R., Lobanov, A. P. & Blandford, R. 2015 The variability of the Crab Nebula in radio: no radio counterpart to gamma-ray flares. Mon. Not. R. Astron. Soc. 446, 205216.Google Scholar
Bogovalov, S. V., Chechetkin, V. M., Koldoba, A. V. & Ustyugova, G. V. 2005 Interaction of pulsar winds with interstellar medium: numerical simulation. Mon. Not. R. Astron. Soc. 358, 705715.Google Scholar
Bogovalov, S. V. & Khangoulyan, D. V. 2002 The Crab Nebula: interpretation of chandra observations. Astron. Lett. 28, 373385.Google Scholar
Bucciantini, N., Arons, J. & Amato, E. 2011 Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381398.Google Scholar
Bucciantini, N., del Zanna, L., Amato, E. & Volpi, D. 2005 Polarization in the inner region of pulsar wind nebulae. Astron. Astrophys. 443, 519524.CrossRefGoogle Scholar
Buehler, R. et al. 2012 Gamma-ray activity in the Crab Nebula: the exceptional flare of 2011 April. Astrophys. J. 749, 26.CrossRefGoogle Scholar
Camus, N. F., Komissarov, S. S., Bucciantini, N. & Hughes, P. A. 2009 Observations of ‘wisps’ in magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 400, 12411246.Google Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2013 Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab flares. Astrophys. J. 770, 147.Google Scholar
Cerutti, B., Werner, G. R., Uzdensky, D. A. & Begelman, M. C. 2014 Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection?. Phys. Plasmas 21 (5), 056501.Google Scholar
Coroniti, F. V. 1990 Magnetically striped relativistic magnetohydrodynamic winds – the Crab Nebula revisited. Astrophys. J. 349, 538545.Google Scholar
Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T. & Wesenberg, M. 2002 Hyperbolic divergence cleaning for the mhd equations. J. Comput. Phys. 175, 645673.CrossRefGoogle Scholar
Del Zanna, L., Amato, E. & Bucciantini, N. 2004 Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants: On the origin of torus and jet-like features. Astron. Astrophys. 421, 10631073.Google Scholar
Del Zanna, L., Landi, S., Papini, E., Pucci, F. & Velli, M. 2016a The ideal tearing mode: theory and resistive MHD simulations. J. Phys.: Conf. Ser. 719 (1), 012016.Google Scholar
Del Zanna, L., Papini, E., Landi, S., Bugli, M. & Bucciantini, N. 2016b Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited. Mon. Not. R. Astron. Soc. 460, 3753.Google Scholar
Del Zanna, L., Volpi, D., Amato, E. & Bucciantini, N. 2006 Simulated synchrotron emission from pulsar wind nebulae. Astron. Astrophys. 453, 621633.Google Scholar
Gaensler, B. M., Arons, J., Kaspi, V. M., Pivovaroff, M. J., Kawai, N. & Tamura, K. 2002 Chandra imaging of the x-ray Nebula powered by pulsar B1509-58. Astrophys. J. 569, 878893.Google Scholar
Gaensler, B. M., Pivovaroff, M. J. & Garmire, G. P. 2001 Chandra observations of the pulsar wind Nebula in supernova remnant G0.9+0.1. Astrophys. J. Lett. 556, L107L111.CrossRefGoogle Scholar
Gaensler, B. M. & Slane, P. O. 2006 The evolution and structure of pulsar wind nebulae. Annu. Rev. Astron. Astrophys. 44, 1747.Google Scholar
Gallant, Y. A. & Arons, J. 1994 Structure of relativistic shocks in pulsar winds: a model of the wisps in the Crab Nebula. Astrophys. J. 435, 230260.CrossRefGoogle Scholar
Gold, T. 1969 Rotating neutron stars and the nature of pulsars. Nature 221, 2527.CrossRefGoogle Scholar
Helfand, D. J., Gotthelf, E. V. & Halpern, J. P. 2001 Vela pulsar and its synchrotron nebula. Astrophys. J. 556, 380391.Google Scholar
Hester, J. J. et al. 1995 WFPC2 studies of the Crab Nebula. I: HST and ROSAT imaging of the synchrotron Nebula. Astrophys. J. 448, 240.CrossRefGoogle Scholar
Hester, J. J. 2008 The Crab Nebula: an astrophysical chimera. Annu. Rev. Astron. Astrophys. 46, 127155.Google Scholar
Hester, J. J., Mori, K., Burrows, D., Gallagher, J. S., Graham, J. R., Halverson, M., Kader, A., Michel, F. C. & Scowen, P. 2002 Hubble space telescope and chandra monitoring of the Crab synchrotron Nebula. Astrophys. J. Lett. 577, L49L52.Google Scholar
Hibschman, J. A. & Arons, J. 2001 Pair production multiplicities in rotation-powered pulsars. Astrophys. J. 560, 871884.Google Scholar
Hoshino, M., Arons, J., Gallant, Y. A. & Langdon, A. B. 1992 Relativistic magnetosonic shock waves in synchrotron sources – Shock structure and nonthermal acceleration of positrons. Astrophys. J. 390, 454479.Google Scholar
de Jager, O. C. & Harding, A. K. 1992 The expected high-energy to ultra-high-energy Gamma-ray spectrum of the Crab nebula. Astrophys. J. 396, 161172.Google Scholar
Kagan, D., Sironi, L., Cerutti, B. & Giannios, D. 2015 Relativistic magnetic reconnection in pair plasmas and its astrophysical applications. Space Sci. Rev. 191, 545573.Google Scholar
Kargaltsev, O., Rangelov, B. & Pavlov, G. G.2013 Gamma-ray and x-ray properties of pulsar wind nebulae and unidentified galactic TeV sources. ArXiv e-prints. arXiv:1305.2552.Google Scholar
Kennel, C. F. & Coroniti, F. V. 1984a Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys. J. 283, 694709.CrossRefGoogle Scholar
Kennel, C. F. & Coroniti, F. V. 1984b Magnetohydrodynamic model of Crab Nebula radiation. Astrophys. J. 283, 710730.CrossRefGoogle Scholar
Kirk, J. G. & Skjæraasen, O. 2003 Dissipation in poynting-flux-dominated flows: the $\unicode[STIX]{x1D70E}$ -problem of the Crab pulsar wind. Astrophys. J. 591, 366379.Google Scholar
Komissarov, S. S., Barkov, M. & Lyutikov, M. 2007 Tearing instability in relativistic magnetically dominated plasmas. Mon. Not. R. Astron. Soc. 374, 415426.Google Scholar
Komissarov, S. S. & Lyubarsky, Y. E. 2004 Synchrotron nebulae created by anisotropic magnetized pulsar winds. Mon. Not. R. Astron. Soc. 349, 779792.Google Scholar
Landi, S., Del Zanna, L., Papini, E., Pucci, F. & Velli, M. 2015 Resistive magnetohydrodynamics simulations of the ideal tearing mode. Astrophys. J. 806, 131.Google Scholar
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14 (10), 100703100703.Google Scholar
Lu, F. J., Wang, Q. D., Aschenbach, B., Durouchoux, P. & Song, L. M. 2002 Chandra observation of supernova remnant G54.1 $+$ 0.3: a close cousin of the Crab Nebula. Astrophys. J. Lett. 568, L49L52.Google Scholar
Lyubarsky, Y. & Kirk, J. G. 2001 Reconnection in a striped pulsar wind. Astrophys. J. 547, 437448.Google Scholar
Lyubarsky, Y. E. 2002 On the structure of the inner Crab Nebula. Mon. Not. R. Astron. Soc. 329, L34L36.CrossRefGoogle Scholar
Lyubarsky, Y. E. 2005 On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 358, 113119.Google Scholar
Lyutikov, M., Sironi, L., Komissarov, S. & Porth, O.2016 Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares. ArXiv e-prints. arXiv:1603.05731.Google Scholar
Melatos, A., Scheltus, D., Whiting, M. T., Eikenberry, S. S., Romani, R. W., Rigaut, F., Spitkovsky, A., Arons, J. & Payne, D. J. B. 2005 Near-infrared, kilosecond variability of the wisps and jet in the Crab pulsar wind Nebula. Astrophys. J. 633, 931940.Google Scholar
Michel, F. C. 1973 Rotating magnetospheres: an exact 3-D solution. Astrophys. J. Lett. 180, L133.Google Scholar
Mignone, A., Bodo, G., Massaglia, S., Matsakos, T., Tesileanu, O., Zanni, C. & Ferrari, A. 2007 Pluto: a numerical code for computational astrophysics. Astrophys. J. Suppl. 170 (1), 228.Google Scholar
Mignone, A., Striani, E., Tavani, M. & Ferrari, A. 2013 Modelling the kinked jet of the Crab Nebula. Mon. Not. R. Astron. Soc. 436, 11021115.CrossRefGoogle Scholar
Mignone, A., Ugliano, M. & Bodo, G. 2009 A five-wave Harten–Lax–van Leer Riemann solver for relativistic magnetohydrodynamics. Mon. Not. R. Astron. Soc. 393, 11411156.Google Scholar
Mignone, A., Zanni, C., Tzeferacos, P., van Straalen, B., Colella, P. & Bodo, G. 2012 The PLUTO code for adaptive mesh computations in astrophysical fluid dynamics. Astrophys. J. Suppl. 198, 7.Google Scholar
Mizuno, Y., Lyubarsky, Y., Nishikawa, K.-I. & Hardee, P. E. 2011 Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. II: relaxation of pulsar wind Nebula. Astrophys. J. 728, 90.Google Scholar
Olmi, B., Del Zanna, L., Amato, E., Bandiera, R. & Bucciantini, N. 2014 On the magnetohydrodynamic modelling of the Crab Nebula radio emission. Mon. Not. R. Astron. Soc. 438, 15181525.Google Scholar
Olmi, B., Del Zanna, L., Amato, E. & Bucciantini, N. 2015 Constraints on particle acceleration sites in the Crab Nebula from relativistic magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 449, 31493159.Google Scholar
Pacini, F. 1967 Energy emission from a neutron star. Nature 216, 567568.Google Scholar
Pacini, F. & Salvati, M. 1973 On the evolution of supernova remnants: evolution of the magnetic field, particles, content, and luminosity. Astrophys. J. 186, 249266.Google Scholar
Pavlov, G. G., Teter, M. A., Kargaltsev, O. & Sanwal, D. 2003 The variable jet of the vela pulsar. Astrophys. J. 591, 11571171.Google Scholar
Philippov, A. A., Spitkovsky, A. & Cerutti, B. 2015 Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys. J. Lett. 801, L19.Google Scholar
Porth, O., Komissarov, S. S. & Keppens, R. 2013 Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 431, L48L52.Google Scholar
Porth, O., Komissarov, S. S. & Keppens, R. 2014a Rayleigh–Taylor instability in magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 443, 547558.Google Scholar
Porth, O., Komissarov, S. S. & Keppens, R. 2014b Three-dimensional magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 438, 278306.Google Scholar
Pucci, F. & Velli, M. 2014 Reconnection of quasi-singular current sheets: the ‘ideal’ tearing mode. Astrophys. J. Lett. 780, L19.Google Scholar
Rees, M. J. & Gunn, J. E. 1974 The origin of the magnetic field and relativistic particles in the Crab Nebula. Mon. Not. R. Astron. Soc. 167, 112.Google Scholar
Rudy et al. 2015 Characterization of the Inner Knot of the Crab: the site of the gamma-ray flares? Astrophys. J. 811, 24.Google Scholar
Samtaney, R., Loureiro, N. F., Uzdensky, D. A., Schekochihin, A. A. & Cowley, S. C. 2009 Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103 (10), 105004.Google Scholar
Scargle, J. D. 1969 Activity in the Crab Nebula. Astrophys. J. 156, 401.Google Scholar
Schweizer, T., Bucciantini, N., Idec, W., Nilsson, K., Tennant, A., Weisskopf, M. C. & Zanin, R. 2013 Characterization of the optical and X-ray properties of the north-western wisps in the Crab Nebula. Mon. Not. R. Astron. Soc. 433, 33253335.Google Scholar
Sironi, L., Giannios, D. & Petropoulou, M. 2016 Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go. Mon. Not. R. Astron. Soc. 462, 4874.Google Scholar
Sironi, L. & Spitkovsky, A. 2009 Synthetic spectra from particle-in-cell simulations of relativistic collisionless shocks. Astrophys. J. Lett. 707, L92L96.Google Scholar
Sironi, L. & Spitkovsky, A. 2011 Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39.Google Scholar
Sironi, L. & Spitkovsky, A. 2014 Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, L21.Google Scholar
Spitkovsky, A. 2008 Particle acceleration in relativistic collisionless shocks: fermi process at last? Astrophys. J. Lett. 682, L5L8.Google Scholar
Stephenson, F. R. & Green, D. A. 2002 Historical supernovae and their remnants. In Historical Supernovae and their Remnants, by F. Richard Stephenson and David A. Green, International Series in Astronomy and Astrophysics, vol. 5. Clarendon Press.Google Scholar
Striani, E. et al. 2011 The Crab Nebula super-flare in 2011 April: extremely fast particle acceleration and gamma-ray emission. Astrophys. J. Lett. 741, L5.Google Scholar
Striani, E. et al. 2013 Variable gamma-ray emission from the Crab Nebula: short flares and long ‘Waves’. Astrophys. J. 765, 52.Google Scholar
Tavani, M. et al. 2011 Discovery of powerful gamma-ray flares from the Crab Nebula. Science 331, 736.Google Scholar
Tchekhovskoy, A., Philippov, A. & Spitkovsky, A. 2016 Three-dimensional analytical description of magnetized winds from oblique pulsars. Mon. Not. R. Astron. Soc. 457, 33843395.Google Scholar
Tenerani, A., Velli, M., Rappazzo, A. F. & Pucci, F. 2015 Magnetic reconnection: recursive current sheet collapse triggered by ‘ideal’ tearing. Astrophys. J. Lett. 813, L32.Google Scholar
Timokhin, A. N. & Harding, A. K. 2015 On the polar cap cascade pair multiplicity of young pulsars. Astrophys. J. 810, 144.Google Scholar
Uzdensky, D. A., Loureiro, N. F. & Schekochihin, A. A. 2010 Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105 (23), 235002.Google Scholar
Volpi, D., Del Zanna, L., Amato, E. & Bucciantini, N. 2008 Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton. Astron. Astrophys. 485, 337349.Google Scholar
Weisskopf, M. C. et al. 2000 Discovery of spatial and spectral structure in the x-ray emission from the Crab nebula. Astrophys. J. Lett. 536, L81L84.Google Scholar
Weisskopf, M. C. et al. 2013 Chandra, keck, and VLA observations of the Crab Nebula during the 2011-April gamma-ray flare. Astrophys. J. 765, 56.CrossRefGoogle Scholar
Yuan, Y. & Blandford, R. D. 2015 On the implications of recent observations of the inner knot in the Crab nebula. Mon. Not. R. Astron. Soc. 454, 27542769.Google Scholar
Yuan, Y., Nalewajko, K., Zrake, J., East, W. E. & Blandford, R. D. 2016 Kinetic study of radiation-reaction-limited particle acceleration during the relaxation of unstable force-free equilibria. ApJ 828, 92.Google Scholar