Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T07:04:42.275Z Has data issue: false hasContentIssue false

Monte Carlo simulation in a strongly coupled linear chain

Published online by Cambridge University Press:  01 October 2008

A. BEKDA
Affiliation:
Theoretical Physics Lab., Faculty of Physics USTHB, B.P. 32 Bab Ezzouar, 16123 Algiers, Algeria ([email protected])
M. DJEBLI
Affiliation:
Theoretical Physics Lab., Faculty of Physics USTHB, B.P. 32 Bab Ezzouar, 16123 Algiers, Algeria ([email protected])
N. BELDJOUDI
Affiliation:
Theoretical Physics Lab., Faculty of Physics USTHB, B.P. 32 Bab Ezzouar, 16123 Algiers, Algeria ([email protected])

Abstract

Monte Carlo simulation is conducted for a strongly coupled one-dimensional confined-particles system. We deal with an infinite chain of positively charged dust particles. The particles interact through the Yukawa screened potential. It is found that a critical value exists for the number of closest neighbors that are involved in the interaction. The inter-particle distance at equilibrium is found. Using these results, we study the dust-acoustic as well as the dust-lattice modes for two situations. In the first we neglect the friction force while in the second situation the presence of an ambient gas in plasma is considered.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chan, C., Hershkowitz, N., Ferreira, A., Intrator, T., Nelson, B. and Lonngren, K. 2003 Phys. Fluids 27, 266.CrossRefGoogle Scholar
[2]Wigner, E. 1994 Phys. Rev. 46, 1002.CrossRefGoogle Scholar
[3]Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Phys. Rep. 421, 1103.CrossRefGoogle Scholar
[4]Wang, X. and Bhattacharjee, A. 1998 Phys. Rev. E 58, 4967.Google Scholar
[5]Winske, D. and Murillo, M. S. 1999 Phys. Rev. E 59, 2263.Google Scholar
[6]Nunamora, S., Ohno, N. and Takamura, S. 1998 Phys. Plasmas 5, 3517.CrossRefGoogle Scholar
[7]Liu, B., Avinash, K. and Goree, J. 2003 Phys. Lett. 91, 255003.CrossRefGoogle Scholar
[8]Liu, B. and Goree, J. 2005 Phys. Rev. E 71, 46410.Google Scholar
[9]Ivlev, A. V. and Morfill, G. E. 2000 Phys. Rev. E 63, 16409.Google Scholar
[10]Zhadanov, S. K. 2002 Phys. Rev. E 66, 26411.Google Scholar
[11]Otani, N. F., Bhattacharjee, A. and Wang, X. 1999 Phys. Plasmas 6, 409.CrossRefGoogle Scholar
[12]Vladimirov, S. V. 1998 Astrophys. Space Sci. 256, 85.CrossRefGoogle Scholar
[13]Rosenberg, M. and Kalman, G. 1997 Phys. Rev. E 56, 7166.CrossRefGoogle Scholar
[14]Pieper, J. B. and Goree, J. 1996 Phys. Rev. Lett. 77, 3137.CrossRefGoogle Scholar
[15]Bedanov, V. M. and Peeters, F. M. 1994 Phys. Rev. B 49, 2667.CrossRefGoogle Scholar
[16]Ohata, H. and Hamaguchi, S. 2000 Phys. Rev. Lett. 84, 6026.CrossRefGoogle Scholar
[17]Piacente, G., Schweigert, I. V., Betouras, J. J. and Peeters, F. M. 2004 Phys. Rev. B 69, 045324.CrossRefGoogle Scholar
[18]Piacente, G., Peeters, F. M. and Betouras, J. J. 2004 Phys. Rev. E 70, 036406.Google Scholar
[19]Vaulina, O. S., Samarian, A. A., Petrov, O. F., James, B. W. and Fortov, V. E. 2003 New J. Phys. 5, 82.CrossRefGoogle Scholar