Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T04:10:08.139Z Has data issue: false hasContentIssue false

Modulational stability of electron plasma wave spectra

Published online by Cambridge University Press:  18 July 2014

H. L. Pécseli*
Affiliation:
Department of Physics, University of Oslo, P. O. Box 1048, Blindern, N-0316 Oslo, Norway
*
Email address for correspondence: [email protected]

Abstract

Analytical models for weakly nonlinear electron plasma waves are considered in order to obtain dynamic equations for the space-time evolution of their local power spectra. The model contains the wave kinetic equation as a limiting case for slow, long wavelength modulations. It is demonstrated that a finite spectral width in wavenumbers has a stabilizing effect on the modulational instability. The results invite a simple heuristic relation between the spectral width and the root-mean-square amplitude of stable stationary turbulent Langmuir wave spectra. A non-local average dispersion relation is derived as a limiting form by using the formalism developed for the spectral dynamics.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alber, I. E. 1978 Effects of randomness on stability of 2-dimensional surface wavetrains. Proc. Roy. Soc. London 363, 525546.Google Scholar
Benney, D. J. and Saffman, P. G. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc. Royal Soc. London. Ser. A, Math. Phys. Sci. 289, 301320.Google Scholar
Bernstein, I. B., Greene, J. M. and Kruskal, M. D. 1957 Exact nonlinear plasma oscillations. Phys. Rev. 108, 546550.CrossRefGoogle Scholar
Bhakta, J. C. and Majumder, D. 1983 Effect of finite spectral width on the modulational instability of Langmuir-waves. J. Plasma Phys. 30, 203209.CrossRefGoogle Scholar
Bloomberg, H. W. 1972 Conservation of quasiparticles in weakly turbulent plasmas. Phys. Fluids 15, 15031507.CrossRefGoogle Scholar
Breizman, B. N. and Malkin, V. M. 1980 Dynamics of the modulational instability of a broad spectrum of Langmuir waves. Sov. Phys. JETP 52, 435441. Russian original (1980) Zh. Eksper. Teor. Fiz. 79, 857–869.Google Scholar
Camac, M., Kantrowitz, A. R., Litvak, M. M., Patrick, R. M. and Petschek, H. E. 1961 Shock waves in collision-free plasmas. Nucl. Fusion Suppl. 2, 423445.Google Scholar
Daldorff, L. K. S., Pécseli, H. L., Trulsen, J. K., Ulriksen, M. I., Eliasson, B. and Stenflo, L. 2011 Nonlinear beam generated plasma waves as a source for enhanced plasma and ion acoustic lines. Phys. Plasmas 18, 052107.Google Scholar
Dysthe, K. B., Espedal, M. S. and Pécseli, H. L. 1986 Langmuir turbulence: proposal for a closure. Phys. Scripta 33, 246253.Google Scholar
Dysthe, K. B., Mjølhus, E., Pécseli, H. L. and Stenflo, L. 1978 Langmuir solitons in magnetized plasmas. Plasma Phys. 20, 10871099.CrossRefGoogle Scholar
Dysthe, K. B. and Pécseli, H. L. 1977 Non-linear Langmuir wave modulation in collisionless plasmas. Plasma Phys. 19, 931943.Google Scholar
Dysthe, K. B., Pécseli, H. L. and Trulsen, J. 1983 Stochastic generation of continuous wave spectra. Phys. Rev. Lett. 50, 353356.CrossRefGoogle Scholar
Forme, F. 1999 Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic fluctuations in the ionosphere: a weak turbulence approach. Ann. Geophysicae 17, 11721181.CrossRefGoogle Scholar
Furutsu, K. 1963 On the statistical theory of electromagnetic waves in a fluctuating medium. J. Res. Natl. Bur Stand. 67D, 303323.Google Scholar
Guio, P. and Forme, F. 2006 Zakharov simulations of Langmuir turbulence: effects on the ion-acoustic waves in incoherent scattering. Phys. Plasmas 13, 122902.Google Scholar
Gurnett, D., Maggs, J., Gallagher, D., Kurth, W. and Scarf, F. 1981 Parametric interaction and spatial collapse of beam-driven Langmuir waves in the solar wind. J. Geophys. Res. 86, 88338841.Google Scholar
Hanssen, A., Pécseli, H., Stenflo, L. and Trulsen, J. 1994 Nonlinear wave interactions in two-electron-temperature plasmas. J. Plasma Phys. 51, 423432.CrossRefGoogle Scholar
Hasegawa, A. 1975 Dynamics of an ensemble of plane waves in nonlinear dispersive media. Phys. Fluids 18, 7779.Google Scholar
Hasegawa, A. 1977 Envelope soliton of random phase waves. Phys. Fluids 20, 21552156.Google Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence. New York: Academic Press.Google Scholar
Khirseli, E. M. and Tsintsadze, N. L. 1980 Nonlinear waves in a two-temperature electron plasma. Fiz. Plazmy 6, 10811084.Google Scholar
Kono, M. 1978 Nonlinear wave modulation in strongly dispersive systems with a random field. J. Phys. Soc. Japan 44, 676682.CrossRefGoogle Scholar
Kono, M. and Škorić, M. M. 2010 Nonlinear Physics of Plasmas (Springer Series on Atomic, Optical, and Plasma Physics). Heidelberg: Springer.Google Scholar
Kono, M. and Yajima, N. 1976 Instability of coherent ion-acoustic wave in a phonon gas. J. Phys. Soc. Japan 41, 272280.Google Scholar
Kontar, E. P. 2001 Dynamics of electron beams in the inhomogeneous solar corona plasma. Solar. Phys. 202, 131149.Google Scholar
Kontar, E. P. and Pécseli, H. L. 2002 Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E 65, 066408.Google Scholar
LaBelle, J., Cairns, I. H. and Kletzing, C. A. 2010 Electric field statistics and modulation characteristics of bursty Langmuir waves observed in the cusp. J. Geophys. Res. 115, A10317.Google Scholar
Leaf, B. 1968 Weyl transformation and the classical limit of quantum mechanics. J. Math. Phys. 9, 769781.CrossRefGoogle Scholar
Marcuvitz, N. 1980 Quasiparticle view of wave-propagation. Proc. IEEE 68, 13801395.Google Scholar
Melrose, D. B. 1987 The Zakharov equations: a derivation using kinetic theory. J. Plasma Phys. 37, 241246.CrossRefGoogle Scholar
Mendonça, J. T. and Bingham, R. 2002 Plasmon beam instability and plasmon Landau damping of ion acoustic waves. Phys. Plasmas 9, 26042608.Google Scholar
Mendonça, J. T., Galvão, R. M. O. and Smolyakov, A. I. 2014 Nonlinear evolution of a single coherent mode in a turbulent plasma. Plasma Phys. Control. Fusion 56, 055004.Google Scholar
Michelsen, P., Pécseli, H. L., Rasmussen, J. J. and Sato, N. 1977 Stationary density variation produced by a standing plasma wave. Phys. Fluids 20, 10941096.Google Scholar
Nicholson, D. R. 1983 Introduction to Plasma Theory. New York: John Wiley & Sons.Google Scholar
Novikov, E. A. 1964 Functionals and the random-force method in turbulence theory. Zh. Eksper. Teor. Fiz. 47, 1919.Google Scholar
Nycander, J., Pavlenko, V. P. and Revenchuk, S. M. 1986 Space-time echo in an unmagnetized weakly turbulent plasma. Phys. Scripta 34, 819820.Google Scholar
Pécseli, H. L. 1984 Electromagnetic wave propagation in random media. Phys. Lett. A 105, 468471.Google Scholar
Pécseli, H. L. 1985 Solitons and weakly nonlinear waves in plasmas. IEEE Trans. Plasma Sci. PS-13, 5386.Google Scholar
Pécseli, H. L., Iranpour, K., Holter, Ø., Lybekk, B., Holtet, J., Trulsen, J., Eriksson, A. and Holback, B. 1996 Lower hybrid wave cavities detected by the FREJA satellite. J. Geophys. Res. 101, 52995316.Google Scholar
Pécseli, H. L. and Trulsen, J. 1990 Wave-number-in-cell simulation of weak Langmuir turbulence. Phys. Rev. Lett. 64, 285288.Google Scholar
Pécseli, H. L. and Trulsen, J. 1992 A wavenumber-in-cell simulation of weak Langmuir turbulence. Phys. Scripta 46, 159172.Google Scholar
Rasmussen, J. J. and Rypdal, K. 1986 Blow-up in nonlinear Schroedinger equations-I, A general review. Phys. Scripta 33, 481497.Google Scholar
Rubenchik, A., Sagdeev, R. and Zakharov, V. 1985 Collapse versus cavitons. Comments Plasma Phys. Control. Fusion 9, 183206.Google Scholar
Scott, A. C. 1982 Dynamics of Davydov solitons. Phys. Rev. A 26, 578595.CrossRefGoogle Scholar
Shapiro, V. D., Shevchenko, V. I., Solov'ev, G. I., Kalinin, V. P., Bingham, R., Sagdeev, R. Z., Ashour-Abdalla, M., Dawson, J. and Su, J. J. 1993 Wave collapse at the lower hybrid resonance. Phys. Fluids B5, 31483162.Google Scholar
Shatashvili, N. L. and Tsintsadze, N. L. 1982 Nonlinear Landau damping phenomenon in a strongly turbulent plasma. Phys. Scripta T2B, 511516.Google Scholar
Tappert, F. D. 1971 Derivation of collisionless wave kinetic equation. SIAM Rev. 13, 281282.Google Scholar
Tappert, F. D. and Cole, W. J. 1971 Numerical particle-in-cell simulation of self-consistent wave kinetic equation. SIAM Rev. 13, 282283.Google Scholar
Thornhill, S. G. and ter Haar, D. 1978 Langmuir turbulence and modulational instability. Phys. Rep. 43, 4399.Google Scholar
Tracy, E. R. and Boozer, A. H. 1989 A self-consistent kinetic quasiparticle model for wave-plasma interactions. Phys. Letters A 139, 318326.CrossRefGoogle Scholar
van Kampen, N. G. and Felderhof, B. U. 1967, Theoretical Methods in Plasma Physics. Amsterdam: North Holland Publishing Company.Google Scholar
Vedenov, A. A., Gordeev, A. V. and Rudakov, L. I. 1967 Oscillations and instability of a weakly turbulent plasma. Plasma Phys. 9, 719735.CrossRefGoogle Scholar
Wigner, E. 1932 On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749759.Google Scholar
Yaglom, A. M. 1962 An Introduction to the Theory of the Stationary Random Functions. New York: Prentice-Hall.Google Scholar
Zakharov, V. E. 1972 Collapse of Langmuir waves. Zh. Eksp. Teor. Fiz. 62, 17451759. Russian original in (1972) Sov. Phys. JETP 35, 908–914.Google Scholar
Zaslavskiă, G. M. and Sagdeev, R. Z. 1967 Limits of statistical description of a nonlinear wave field. Sov. Phys. JETP, 25, 718724. Russian original in (1967) J. Exptl. Theoret. Phys. (U.S.S.R.) 52, 1081–1091.Google Scholar