Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T00:59:33.095Z Has data issue: false hasContentIssue false

Modified Korteweg–de Vries–Zakharov–Kuznetsov solitons in symmetric two-temperature electron–positron plasmas

Published online by Cambridge University Press:  01 August 2008

I. J. LAZARUS
Affiliation:
Department of Physics, Durban University of Technology, Durban, South Africa ([email protected]) School of Physics, University of KwaZulu-Natal, Durban, South Africa
R. BHARUTHRAM
Affiliation:
Faculty of Science, University of Witwatersrand, Johannesburg, South Africa ([email protected])
M. A. HELLBERG
Affiliation:
School of Physics, University of KwaZulu-Natal, Durban, South Africa

Abstract

Solitary waves are investigated in a magnetized electron–positron plasma consisting of equal hot and cool components of each species. The hot components have a Boltzmann distribution and the cool components are described by the fluid equations. A modified Korteweg–de Vries–Zakharov–Kuznetsov equation governing the oblique propagation of nonlinear electrostatic modes is derived using the reductive-perturbation technique. Soliton amplitudes are studied as a function of plasma parameters such as the particle number densities and the temperatures. Such results may be of relevance to the magnetosphere of pulsars.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alkofer, R., Hecht, M. B., Roberts, C. D., Schmidt, S. M. and Vinnik, D. V. 2001 Phys. Rev. Lett. 87, 193902.CrossRefGoogle Scholar
[2]Beskin, V. S., Gurevich, A. V. and Istomin, Ya. N. 1983 Sov. Phys.–JETP 58, 235.Google Scholar
[3]Bhattacharyya, R., Janaki, M. S. and Dasgupta, B. 2003 Phys. Lett. A 315, 120.CrossRefGoogle Scholar
[4]Bharuthram, R. 1992 Astrophys. Space Sci. 189, 213.Google Scholar
[5]Boehmer, H. 1994 Slow Positron Beam Techniques for Solids and Surfaces (AIP Conf. Proc., 303) (ed. Ottewitte, E. and Weiss, A.). New York: American Institute of Physics, p. 442.Google Scholar
[6]Gary, S. P. and Tokar, R. L. 1985 Phys. Fluids 28, 2439.Google Scholar
[7]Gedalin, M. E., Lominadze, J. G., Stenflo, L. and Tsytovich, V. N. 1985 Astrophys. Space Sci. 108, 393.CrossRefGoogle Scholar
[8]Goldreich, P. and Julian, W. H. 1969 Astrophys. J. 157, 869.CrossRefGoogle Scholar
[9]Greaves, R. G., Tinkle, M. D. and Surko, C. M. 1994 Phys. Plasmas 1, 1439.CrossRefGoogle Scholar
[10]Greaves, R. G. and Surko, C. M. 1995 Phys. Rev. Lett. 75, 3846.Google Scholar
[11]Liang, E. P., Wilks, S. C. and Tabak, M. 1998 Phys. Rev. Lett. 81, 4887.CrossRefGoogle Scholar
[12]Mahmood, S., Mustaq, A. and Saleem, H. 2003 New J. Phys. 5, 28.Google Scholar
[13]Marklund, M. and Shukla, P. K. 2006 Rev. Mod. Phys. 78, 591.CrossRefGoogle Scholar
[14]Michel, F. C. 1982 Rev. Mod. Phys. 54, 1.Google Scholar
[15]Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin: Springer, p. 202.Google Scholar
[16]Misra, A. P. and Chowdhury, A. R. 2003 Chaos, Solitons and Fractals 15, 801.CrossRefGoogle Scholar
[17]Nicholson, D. R. 1983 Introduction to Plasma Theory. New York: Wiley, p. 173.Google Scholar
[18]Oohara, W., Date, D. and Hatakeyama, R. 2005 Phys. Rev. Lett. 95, 175003.CrossRefGoogle Scholar
[19]Pillay, R. and Bharuthram, R. 1992 Astrophys. Space Sci. 198, 8593.Google Scholar
[20]Piran, T. 2004 Rev. Mod. Phys. 76, 1143.Google Scholar
[21]Popel, S. I., Vladimirov, S. V. and Shukla, P. K. 1995 Phys. Plasmas 2, 716.CrossRefGoogle Scholar
[22]Rees, M. J. 1983 The Very Early Universe (ed. Gibbons, G. W., Hawking, S. W. and Siklas, S.). Cambridge: Cambridge University Press.Google Scholar
[23]Remington, B. A. 2005 Plasma Phys. Control. Fusion 47, A191.CrossRefGoogle Scholar
[24]Ringwald, A. 2001 Phys. Lett. B 510, 107.Google Scholar
[25]Roberts, C. D., Schmidt, S. M. and Vinnik, D. V. 2002 Phys. Rev. Lett. 89, 153901.CrossRefGoogle Scholar
[26]Shukla, P. K. and Yu, M. Y. 1978 J. Math. Phys. 19, 2506.CrossRefGoogle Scholar
[27]Stenflo, L., Shukla, P. K. and Yu, M. Y. 1985 Astrophys. Space Sci. 117, 303.CrossRefGoogle Scholar
[28]Tandberg, E. H. and Emslie, A. G. 1988 The Physics of Solar Flares. Cambridge: Cambridge University Press, p. 124.Google Scholar
[29]Verheest, F., Hellberg, M. A., Gray, G. J. and Mace, R. L. 1996 Astrophys. Space Sci. 239, 125.CrossRefGoogle Scholar
[30]Verheest, F., Mace, R. L., Pillay, S. R. and Hellberg, M. A. 2002 J. Phys. A: Math. Gen. 35, 795.CrossRefGoogle Scholar
[31]Wilks, S. C., Chen, H., Liang, E., Patel, P., Price, D., Remington, B., Shepherd, R., Tabak, M. and Kruer, W. L. 2005 Astrophys. Space Sci. 298, 347.CrossRefGoogle Scholar
[32]Yu, M. Y., Shukla, P. K. and Stenflo, L. 1986 Astrophys. J. 309, L63.Google Scholar