Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T19:12:25.361Z Has data issue: false hasContentIssue false

Microwave discharge initiated by double laser spark in a supersonic airflow

Published online by Cambridge University Press:  30 January 2015

R. S. Khoronzhuk*
Affiliation:
Physical Faculty, Saint Petersburg State University, Saint Petersburg, 198504, Russia
A. G. Karpenko
Affiliation:
Mathematics and Mechanics Faculty, Saint Petersburg State University, Saint Petersburg, 198504, Russia
V. A. Lashkov
Affiliation:
Mathematics and Mechanics Faculty, Saint Petersburg State University, Saint Petersburg, 198504, Russia
D. P. Potapeko
Affiliation:
Physical Faculty, Saint Petersburg State University, Saint Petersburg, 198504, Russia
I. Ch. Mashek
Affiliation:
Physical Faculty, Saint Petersburg State University, Saint Petersburg, 198504, Russia
*
Email address for correspondence: [email protected]

Abstract

In this paper, we report the results of an experimental study of microwave (MW) discharge in the supersonic flow initiated by the laser spark and numerical simulation of multiple laser spark shockwave structures in airflow. The MW discharge initiation has been produced by single and double laser sparks. By using different spatial and temporal configuration of laser sparks in supersonic flow, we demonstrate the feasibility of an MW breakdown threshold decrease and control over shape and location of MW plasma. Calculation of laser spark shock wave structures shows good agreement with experimental shadow photographs both in the front shock wave diameter and its internal structure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasev, S. A., Brovkin, V. G. and Kolesnichenko, Yu. F. 2010 Laser spark initiated microwave discharge. Tech. Phys. Lett. 36 (7), 672674.CrossRefGoogle Scholar
Anderson, K. and Knight, D. 2011 Interaction of heated filaments with a blunt cylinder in supersonic flow. Shock Waves 21, 149161.CrossRefGoogle Scholar
Azarova, O., Knight, D. and Kolesnichenko, Y. 2011 Pulsating stochastic flows accompanying microwave filament/supersonic shock layer interaction. Shock Waves 21 (5), 439450.CrossRefGoogle Scholar
Belotserkovskii, O. M. and Davydov, L. M. 1982 The large-particle method in gas dynamics: computational experiment. Mosc. Izdatel Nauka 1, 392 p.Google Scholar
Bityurin, V. A., Brovkin, V. G. and Vedenin, P. V. 2012 Investigation of the electromagnetic wave scattering dynamics during microwave streamer evolution. J. Tech. Phys. 57 (1), 95105.CrossRefGoogle Scholar
Brode, H. L. 1955 Numerical solutions of spherical blast waves. J. Appl. Phys. 26 (6), 766775.CrossRefGoogle Scholar
Brovkin, V. G., Bykov, D. F., Golubev, S. K., Gricinin, S. I., Gumberidze, G. G., Kossyi, I. A. and TakTakishwilli, M. I. 1991 Gas discharge initiated by mw radiation and CO2 laser radiation. J. Tech. Phys. 61 (2), 153157.Google Scholar
Chen, Y.-L, Lewis, J. W. L and Parigger, C. 2000 Spatial and temporal profiles of pulsed laser-induced air plasma emissions. J. Quant. Spectrosc. Radiat. Transfer 67 (2), 91103.CrossRefGoogle Scholar
Godunov, S. K., Zabrodin, A. V., Ivanov, M. L., Kraiko, A. N. and Prokopov, G. P. 1976 Numerical solution of multidimensional problems of gas dynamics. Mosc. Izdatel Nauka 1.Google Scholar
GolbabaeiAsl, M. Asl, M. and Knight, D. 2007 Plasma induced by resonance enhanced multiphoton ionization in inert gas. J. Appl. Phys. 102, 123 103.Google Scholar
GolbabaeiAsl, M. Asl, M. and Knight, D. 2014 Numerical characterization of high-temperature filament interaction with blunt cylinder at Mach 3. Shock Waves 24 (2), 123138, http://link.springer.com/article/10.1007%2Fs00193-013-0471-6CrossRefGoogle Scholar
Goldstine, H. H. and Neumann, J. V. 1955 Blast wave calculation. Commun. Pure Appl. Math. 8 (2), 327353.CrossRefGoogle Scholar
Yan, H., Adelgren, R., Elliott, G., Knight, D. and Bogushko, M. 2003 Laser energy deposition in quiescent air. AIAA J. 41 (10), 19881995.CrossRefGoogle Scholar
Knight, D. 2008 Survey of aerodynamic drag reduction at high speed by energy deposition. J. Propulsion Power 24 (6), 11531167.CrossRefGoogle Scholar
Knight, D., Kolesnichenko, Y., Brovkin, V., Khmara, D., Lashkov, V. and Mashek, I. 2009 Interaction of microwave-generated plasma with a hemisphere cylinder at mach 2.1. AIAA J. 47 (12), 29963010.CrossRefGoogle Scholar
Kolesnichenko, Yu. F., Brovkin, V. G., Azarova, O. A., Grudnitsky, V. G., Lashkov, V. A. and Mashek., I. Ch. 2003 Mw energy deposition for aerodynamic application. In: Proc. 41th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2003-0361.Google Scholar
Kolesnichenko, Yu. F., Brovkin, V. G., Khmara, D., Lashkov, V. A. and Mashek, I. Ch. 2006 Regimes of laser plasmas - mw field interaction. In: Proc. 44th AIAA Aerospace Sciences Meeting, AIAA 2006-0792.Google Scholar
Kolesnichenko, Yu. F., Gorynya, A. A. and Brovkin, V. G. 2001 Investigation of ad-body interaction with microwave discharge region in supersonic flows. In: Proc. 39th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2001-0345.Google Scholar
Lashkov, V. A., Mashek, I. Ch., Ivanov, V. I., Kolesnichenko, Yu. F. and Rivikin, M. I. 2008 Gas-dynamic peculiarities of microwave discharge interaction with shock wave near the body. In: Proc. 46th AIAA Aerospace Sciences Meeting, AIAA 2008-1410.Google Scholar
Mashek, I. Ch., Anisimov, Yu. I., Lashkov, V. A., Kolesnichenko, Yu. F., Brovkin, V. G. and Rivikin, M. I. 2004 Microwave discharge initiated by laser spark in air. In: Proc. 42th AIAA Aerospace Sciences Meeting, AIAA 2004-0358.Google Scholar
Michael, J. B., Edwards, M. R. and Miles, R. B. 2011 Time-resolved temperature measurements of laserdesignated, microwave driven ignition. In: Proc. 49th AIAA Aerospace Sciences Meeting, AIAA 2011-1020.Google Scholar
Miles, R. B. 2000 Flow control by energy addition in to high-speed air. In: Proc. 38th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2000-2324.Google Scholar
Okhotsimskii, D. Ye., Kondrasheva, I. L., Vlasova, Z. P. and Kazakova, R. K. 1957 Calculation of dot explosion with counter-pressure. In: Proc. Steklov Institute of Mathematics, 65.Google Scholar
Okhotsimskii, D. Ye. and Vlasova, Z. P. 1963 The behaviour of shock waves at large distances from the point of explosion. USSR Comput. Math. Math. Phys. 2 (1), 107127.CrossRefGoogle Scholar
Polianskij, A. F., Lashkov, V. A. and Tsitelov, I. M. 2013 Parametrical research of influence of the localized energy supply on aerodynamic characteristics of the blunted body in a supersonic stream. Vestnik St. Petersburg University. Ser. 1. 2013. Issue 3. pp. 142–146.Google Scholar
Raizer, Y. P. 1987 Gas Discharge Physics. Nauka, Moscow.Google Scholar
Sedov, L. I. 1946a Dokl. Akad. Nauk 42 (1), 1720.Google Scholar
Sedov, L. I. 1946b J. Appl. Math. Mech. 10 (2), 241250.Google Scholar
Sedov, L. I. 1977 Methods of Similarity and Dimensions in Mechanics. Mosc. Izdatel Nauka: Akademizdatcenter Nauka RAS.Google Scholar
Taylor, G. 1950 The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. Lond. A 201 (1065), 175186.Google Scholar
Toro, E. F. 1999 Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 2nd edn.Berlin: Springer.CrossRefGoogle Scholar
Yan, H., Knight, D., Kandala, R. and Candler, G. 2007 Effect of a laser pulse on a normal shock. AIAA J. 45 (6), 12701280.CrossRefGoogle Scholar