Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T22:24:06.679Z Has data issue: false hasContentIssue false

MHD surface waves in high- and low-beta plasmas. Part 1. Normal-mode solutions

Published online by Cambridge University Press:  13 March 2009

Z. E. Musielak
Affiliation:
Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama 35812, U.S.A.
S. T. Suess
Affiliation:
Space Science Laboratory, NASA Marshall Space Flight Center, Huntsville, Alabama 35812, U.S.A.

Abstract

Since the first paper by Barston (1964) on electrostatic oscillations in inhomogeneous cold plasmas, it has been commonly accepted that all finite layers with a continuous profile in pressure, density and magnetic field cannot support normal surface waves but instead the waves always decay through phase mixing (also called resonant absorption). Here we reanalyse the problem by studying a compressible current sheet of a general structure with rotation of the magnetic field included. We find that all inhomogeneous layers considered in the high-β plasma limit do not support normal modes. However, in the limit of a low-β plasma there are some cases when normal-mode solutions are recovered. The latter means that the process of resonant absorption is not common for all inhomogeneous layers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barston, E. M. 1964 Ann. Phys. (NY), 29, 282.CrossRefGoogle Scholar
Behannon, K. W., Neubauer, F. M. & Barnstorf, H. 1981 J. Geophys. Res. 86, 3273.CrossRefGoogle Scholar
Bertin, G. & Coppi, B. 1985 Astrophys. J. 298, 387.CrossRefGoogle Scholar
Bertin, G., Einaudi, G. & Pegoraro, F. 1986 Comments Plasma Phys. Contr. Fusion, 10, 173.Google Scholar
Cally, P. S. 1985 Austral. J. Phys. 38, 825.CrossRefGoogle Scholar
Chen, L. & Hasegawa, A. 1974 a Phys. Fluids, 17, 1399.CrossRefGoogle Scholar
Chen, L. & Hasegawa, A. 1974 b J. Geophys. Res. 17, 1399.Google Scholar
Davila, J. M. 1987 Astrophys. J. 317, 514.CrossRefGoogle Scholar
Gradov, O. M. & Stenflo, L. 1983 Phys. Rep. 94, 111.CrossRefGoogle Scholar
Grossmann, W. & Tataronis, J. 1973 Z. Phys. 261, 217.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1974 Phys. Rev. Lett. 32, 454.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1975 Phys. Rev. Lett. 35, 370.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1976 Phys. Fluids, 19, 1924.CrossRefGoogle Scholar
Hollweg, J. V. 1987 Astrophys. J. 320, 875.CrossRefGoogle Scholar
Hopcraft, K. I. & Smith, P. R. 1986 Planet. Space Sci. 34, 1253.CrossRefGoogle Scholar
Ionson, J. A. 1978 Astrophys. J. 226, 650.CrossRefGoogle Scholar
Kappraff, J. M. & Tataronis, J. A. 1977 J. Plasma Phys. 18, 209.CrossRefGoogle Scholar
Kieras, C. E. & Tataronis, J. A. 1982 Phys. Fluids, 25, 1228.CrossRefGoogle Scholar
Lanzerotti, L. J., Fukunishi, H., Hasegawa, A. & Chen, L. 1973 Phys. Rev. Lett. 31, 624.CrossRefGoogle Scholar
Lee, M. A. & Roberts, B. 1986 Astrophys. J. 301, 430.CrossRefGoogle Scholar
Musielak, Z. E. 1986 J. Plasma Phys. 36, 341.CrossRefGoogle Scholar
Musielak, Z. E. & Suess, S. T. 1988 Astrophys. J. 330, 451.CrossRefGoogle Scholar
Priest, E. R. 1982 Solar Magnetohydrodynamics, pp. 182186. Reidel.CrossRefGoogle Scholar
Roberts, B. 1981 Solar Phys. 69, 27.CrossRefGoogle Scholar
Sedlacek, Z. 1971 J. Plasma Phys. 5, 239.CrossRefGoogle Scholar
Tataronis, J. A. 1977 J. Plasma Phys. 13, 87.CrossRefGoogle Scholar
Tataronis, J. A. & Grossmann, W. 1973 Z. Phys. 261, 203.CrossRefGoogle Scholar
Tataronis, J. A. & Lewis, H. R. 1986 Phys. Fluids, 29, 167.CrossRefGoogle Scholar
Uberoi, C. 1988 J. Geophys. Res. 93, 295.CrossRefGoogle Scholar
Watson, G. N. 1966 A Treatise on the Theory of Bessel Functions, pp. 7584. Cambridge University Press.Google Scholar